MALAVIYA NATIONAL INSTITUTE OF TECHNOLOGY JAIPUR

DEPARTMENT OF CHEMISTRY

COURSE STRUCTURE FOR

M.Sc. CHEMISTRY

	M.Sc. First Year (First Semester)				
SI. No.	Code	Subject	L-T-P	Credits	
1	21CYT505	Advanced Inorganic Chemistry	3-1-0	4	
2	21CYT506	Analytical Chemistry	3-1-0	4	
3	21CYT507	Organic Chemistry	3-1-0	4	
4	21CYT508	Quantum Chemistry	3-1-0	4	
5	21CYP501	Inorganic Chemistry Lab-I	0-0-4	2	
6	21CYP502	Organic Chemistry Lab-I	0-0-4	2	
7	21CYP503	Physical Chemistry Lab-I	0-0-4	2	
8	21CYP504	Analytical Chemistry Lab-I	0-0-4	2	
		Total	24		

	M.Sc. First Year (Second Semester)				
SI. No.	Code	Subject	L-T-P	Credits	
1	21CYT513	Advanced Organic Chemistry	3-1-0	4	
2	21CYT514	Bonding in Main Group Elements and Transition Metal Organometallic Chemistry	3-1-0	4	
3	21CYT515	Classical and Statistical Thermodynamics	3-1-0	4	
4	21CYT516	Spectroscopy and its Applications	3-1-0	4	
5	21CYP509	Inorganic Chemistry Lab-II	0-0-4	2	
6	21CYP510	Organic Chemistry Lab-II	0-0-4	2	
7	21CYP511	Physical Chemistry Lab-II	0-0-4	2	
8	21CYP512	Analytical Chemistry Lab-II	0-0-4	2	
	·	·	Total	24	

	M.Sc. Second Year (Third Semester)				
SI. No.	Code	Subject	L-T-P	Credits	
1	21CYT807- 21CYT829	Program Elective-I	3-0-0	3	
2	21CYT807- 21CYT829	Program Elective-II	3-0-0	3	
3	21CYT807- 21CYT829	Program Elective-III	3-0-0	3	
4	21CYT807- 21CYT829	Program Elective-IV	3-0-0	3	
5	21CYT807- 21CYT829	Program Elective-V	3-0-0	3	
6	21CYD601	Dissertation – I	0-0-12	6	
			Total	21	

	M.Sc. Second Year (Fourth Semester)					
SI. No.	Code	Subject	L-T-P	Credits		
1	21CYT807- 21CYT829	Program Elective-VI	3-0-0	3		
2	-	Open Elective-I	3-0-0	3		
3	21CYD 602	Dissertation – II	0-0-20	10		
			Total	16		

List of Program Electives				
SI. No	Code	Program Electives	L-T-P	Credits
1	21CYT807	Photo-Inorganic Chemistry	3-0-0	3
2	21CYT808	Organometallics and Catalysis	3-0-0	3
3	21CYT809	Supramolecular Chemistry	3-0-0	3
4	21CYT810	Polymer Chemistry	3-0-0	3
5	21CYT811	Organometallic Chemistry of Main Group Elements	3-0-0	3
6	21CYT812	Bio-Inorganic Chemistry	3-0-0	3
7	21CYT813	Symmetry and Group Theory	3-0-0	3
8	21CYT814	Organic Synthesis	3-0-0	3
9	21CYT815	Applied Biocatalysis (Enzymes)	3-0-0	3
10	21CYT816	Heterocyclic Chemistry	3-0-0	3
11	21CYT817	Chemistry of Natural Products	3-0-0	3
12	21CYT818	Pharmaceutical Chemistry	3-0-0	3
13	21CYT819	Cell Structure & Biomolecules	3-0-0	3
14	21CYT820	Biochemistry	3-0-0	3
15	21CYT821	Physical Organic Chemistry	3-0-0	3
16	21CYT822	Electrochemistry: Ionics and Electrodics	3-0-0	3
17	21CYT823	Solid State Chemistry - Fundamentals and Applications	3-0-0	3
18	21CYT824	Laser Spectroscopy: Theory and Applications	3-0-0	3
19	21CYT825	Advanced Analytical Chemistry	3-0-0	3
20	21CYT826	Dyes and Pigments	3-0-0	3

21	21CYT827	Molecular Spectroscopy	3-0-0	3
22	21CYT828	Concepts in Chemical Kinetics and Dynamics	3-0-0	3
23	21CYT829	Green and Industrial Organic Chemistry	3-0-0	3
		List of Open Electives		
SI. No	Code	Open Electives	L-T-P	Credits
1	21CYT801	Chemistry for Renewable Energy	3-0-0	3
2	21CYT802	Environmental Chemistry	3-0-0	3
3	21CYT803	Introduction to Density Functional Theory	3-0-0	3
4	21CYT804	Atmospheric Chemistry	3-0-0	3
5	21CYT805	Introduction to Astrochemistry	3-0-0	3
6	21CYT806	Electrochemical Energy Storage Systems	3-0-0	3

	Advanced Inorganic Chemistry (21CYT505)				
-	eneral knowledge on chemical bonding, ometry. Periodic properties of elements	L	т	Р	
Type: Core Cours	se	3	1	0	
complexe • To enable • To enab	the students to understand the stereoc	chanism in ti	ransition metal	complexes	
Course Content					
Module1 (12L)	Stereochemistry and Bonding Bonding models in d block elements, Walsh diagrams, $d\pi$ - $d\pi$ bonds, stereochemistry, distortions and electronic spectra of coordination compounds				
Module 2 (12L)	PL) Reaction Mechanism Inert and labile complexes, thermodynamic and kinetic aspects, kinetics of octahedral substitution reactions, substitution reactions in square planar complexes, trans effects, mechanism of substitution reaction, redox reactions, outer sphere reactions, cross reactions and Marcus-Hush theory, inner sphere reactions, the experiments of Taube			quare planar dox reactions,	
Module 3 (6L)	Chemistry of f-block Elements General discussion on the properties of the f-block elements, spectral and magnetic properties, use of lanthanide compounds as shift reagents, photophysical properties of lanthanide complexes			•	
Module 6 (10L)	Applicative aspects of inorganic chemistry Electron transfer in biological system, inorganic complexes as cancer drugs, as renewable energy, and electroluminescent complexes, oxidative and reductive reactions.				
Reference Books	 Advanced Inorganic Chemistry, F.A. Cotton & Wilkinson, John Wiley. Inorganic Chemistry (Fourth Edition), J.E. Huheey, E. A. Keiter, R. L. Keiter (Pearson publishers). Chemistry of the elements (Second Edition), N.N. Greenwood and A. Earnshaw (Elsevier publishers). 				
Course Outcomes	 Earnshaw (Elsevier publishers). CO1. The students will be able to understand the stereochemistry and bonding in transition metal complexes CO2. Students will be able to understand reaction mechanism in transition metal complexes 				

CO3. Students will be familiar with the various transition metal-based inorg materials	anic
--	------

	Analytical Chemistry	(21CYT506)		
Prerequisite: Kr chemistry	nowledge of basic topics in analytical	L	т	Р
Type: Core Cour	se	3	1	0
 Course Objectives: To enable the students to acquire fundamental knowledge of the principles of analytic chemistry for various applications To bring adaptability to new developments in analytical chemistry and a knowledge contemporary issues To make them apply the knowledge of analytical chemistry for identification, solution a analysis of complex problems and design system components or processes that meet t specified needs with appropriate consideration for the public health and safety, and t cultural, societal, and environmental considerations 				
Course Content				
Module 1 (7L)	Basic tools and operations: Role of analytical chemistry, Classification of analytical methods, Types of instrumental analysis, Selecting an analytical method, Neatness and cleanliness, Laboratory operations and practices, errors, Sample preparation-dissolution and decompositions, Selecting and handling of reagents, Laboratory notebooks, Safety in the analytical laboratory			
Module 2 (7L)	Data handling: Accuracy and precisi significant figures and propagation treatment software, control chart, co calibration methods, linear and non-li	of errors, use nfidence limit,	e of spreadsh test of significa	eet and data
Module 3 (7L)	Thermal methods: Thermogravimetry (DTG), instrument Differential Thermal analysis (DTA) a Spectroscopic techniques: Ab phosphorescence	tation, applicand DSC with a	ations with sor pplications	
Module 4 (10L)	Electroanalytical methods: Polarce amperometry, coulometry and condu- principle, instrumentation, limitations, analysis, Amperometric and Bio Fundamentals of potentiometry, diffe	ctometry. Anno applications to amperometric	odic sttripping v o qualitative ar titrations, F	oltammetry; – nd quantitative
Module 5 (9L)	Separation methods: Solvent extraction: Partition law and factor, factor influencing extraction, r cloud point extraction, Chromatog	nultiple extract	ions, solid pha	se extraction,

	chromatography, concept of plate and rate theory, Ion exchangers , Resolution, Van Deemter equation, paper and TLC, Liquid chromatographic techniques	
Reference Books	 Christian G.D., Dasgupta P.K., Schug K.A., "Analytical Chemistry" 7th Ed., Wiley 2013 Mendham J., Denny R.C., Barnes J.D. and Thomas M.J.K., "Vogel's Text Book of Quantitative Chemical Analysis" 6th Ed., Pearson Education 2004 Skoog D.A., West D.M., Holler F.J. and Crouch S.R., "Fundamentals of Analytical Chemistry" 8th Ed., Thomson Brooks/Cole.2004 Fifield F.W., and Kealey D., "Principles and Practice of Analytical Chemistry", 5th Ed., Blackwell Science. 2000 Ewing G.W., "Instrumental Methods of Chemical Analysis", 5th Ed., McGraw Hill. 2004 	
Course Outcomes	 CO1. Students will be able to understand various aspects and importance of analytical chemistry. They can identify, formulate, and analyze complex analytical problems reaching substantiated conclusions using various principles of analytic chemistry CO2. Students will be able to design/development of various methods based on analytical tools for the public health and safety. CO3. Students will be able to conduct investigations of complex problems by the use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions. CO4. Students will learn about environment and sustainability of analytical tools and their impact on societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. 	

	Organic Chemistry (21CYT507)			
-	Basic knowledge of biomolecules, and pericyclic reactions	L	т	Р
Type: Core Cour	se	3	1	0
-	tion: To impart knowledge of advan ns and photochemical reactions.	ce organic ch	emistry includi	ng carbohydrates,
Course Content				
Module 1 (12L)	Carbohydrates and importance Classification, structure, uses, isolation reference to Nucleotides, glycosides a Structure and biological importance of based molecules	and glycoprote	ins, Separation	of carbohydrates,
Module 2 (14L)	Pericyclic Reactions Classification of periycyclic reaction FMO and PMO approach, Electri motions, 4n, 4n+2 and allyl system addition, 4n and 4n+2 systems, 2+2 and cheleotropic reaction Sigmatropic rearrangements-suprafa involving carbon moieties, 3,3-and 5 Ene reaction.	ocyclic reactions, Cycoladdin addition of ke cial and atrafa	ons-conrotatory tions-antrafacia tenes, 1,3 dipo cial shifts of H,	 and disrotatory and suprafacial and Cycoladditions sigmatropic shifts
Module 3 (14L)	Photochemistry Principles and mechanistic back Processes; Jablonski diagram, Int associated phenomenon, Fluorescen Photochemical reactions involving Paterno Buchi reaction, Norrish type photochemistry & photochemistry Photosensitization, Photo-Fries rea rearrangement.	ernal convers ice & Phospho organic mole reactions, pho of aromatic	ion, Intersyste rescence ecules, cis-tra toreduction of s (addition	em crossing, and ns Isomerization, ketones, Dienone- & isomerization),
Reference Books	 Principles of Organic Synthesis Academic & Professional. Reaction Mechanism in Organic Macmillan. Pericyclic Reactions, S.M. Mukhe Chemistry of Natural Products, S Narosa Publishing House, New D Introduction to Medicinal chemistry 	c Chemistry, rji, Macmillan, S. V. Bhat, B. J elhi.	S.M. Mukherji India A. Nagasampa	and S.P. Singh,

	 Fundamental of Photochemistry, K.R. Rohtagi-Mukherji, Wiley-Eastern Introductory Photochemistry, A. Cox & T. Camp, McGraw-Hill Photochemistry, R.P. Kundall & A. Gilbert, Thomson Nelson. Molecular Reactions & Photochemistry, C.H. Depuy & O.S. Chapman, Prentice-Hall. Pericyclic Reactions - A Textbook: Reactions, Applications and Theory, S. Sankararaman, Wiley-VCH. Carbohydrate Chemistry, Antony J. Fairbanks and B. G. Davis, Oxford University Press.
Course Outcomes	 CO1. Understand basics of carbohydrates, their structure, types and importance in biological system. CO2. Explain the theoretical basis pericyclic reaction and also helps them to find a way to carry out these types of reaction CO3. Explain theory and practice of common photochemical and photophysical methods CO4. Explain and discuss theories for photoinduced electron transfer and excitation energy transfer CO5. Explain photochemical reactions in organic molecules

Quantum Chemistry (21CYT508)					
Prerequisite: Knowledge of basic mathematics L T P					
Type: Core Co	Course 3 1 0				
Course Objectives: This course will serve as a basic foundation course for any other course or concept which require quantum mechanics like spectroscopy, bonding, statistical and thermodynamics, Reaction rate theories etc.					
Course Conter	nt				
Module 1 (5L)	Introduction: Historic background, Wa	ve particle dua	lity, uncertainty	v principle	
Module 2 (4L)	Schrodinger equation: wave function a independent Schrodinger equation, Eige	•	•	dent and time-	
Module 3 (7L)	Quantum mechanics of some simple systems: free particle, particle in a box, harmonic oscillator, Rectangular barrier crossing, Tunneling				
Module 4 (5L)	Angular Momentum: Ladder operator methods, rigid rotor, orbital and spin angular momentum, addition of angular momentum				
Module 5 (4L)	Hydrogen and hydrogen like atoms				
Module 6 (6L)	Approximate methods: perturbation theory, variation method, some simple examples				
Module 7 (4L)	Many electron atom: Pauli antisymmetry principle, Slater determinant, He atom, Hartree-Fock Theory				
Module 8 (4L)	H_{2}^{+} system, Heitler-London treatment of H_{2} molecule, Huckel Theory, Extended Huckel Theory				
Module 9 (3L)	Term Symbols, Introduction to Band theory, Quantum Dots				
References	 Text Books: 1. D. A. McQuarrie, J. D. Simon; Physical Chemistry- A Molecular Approach, Viva Books, First Edition 2. L. Pauling, E. B. Wilson; Introduction to Quantum Mechanics, Dover Books on Physics, First Edition 3. Ira N. Levine; Quantum Chemistry, Pearson Education India, First Edition 4. Donald A. McQuarrie, Quantum Chemistry, Viva Books, First Edition 				
Reference Books 1. J. J. Sakurai; Modern Quantum Mechanics, Cambridge University Press Edition 2. Feynman Lectures in Physics vol III, Pearson Education, First Edition					

	 Quantum Mechanics: L. D. Landau and E. M. Liefshitz, Pergamon Press, Second Edition Quantum Mechanics: E. Merzbacher, Wiley, Third Edition Lectures On Quantum Mechanics, Ashok Das, World Scientific Publishing, Second Edition
Course Outcome	CO1. They learn how a chemical bond is formed. CO2. Basic quantization of matter which become key in spectroscopy CO3. Simple models to illustrate the role of quantization in chemistryproblems

Inorganic Chemistry Lab-I (21CYP501)						
Prerequisite: Understanding of qualitative and L T P quantitative reactions						
Type: Core Course004						
Course Descrip experiment	Course Description: To impart knowledge on the process of performing inorganic laboratory experiment					
Course Content						
Experiment Number	Title of the	Experiment				
1	Preparation of Co-SALEN complex and	its oxygen bi	nding propertie	s		
2	Preparation of di(chloro)-bis-(tri-phenylp	Preparation of di(chloro)-bis-(tri-phenylphosphine)Nickel(II)				
3	Preparation of tetra-amine cupric-sulphate $[Cu(NH_3)_4]SO_4$.H ₂ O]					
4	Preparation of tris-acetylacetonato iron(III)					
5	Synthesis and characterization of potassium tris-oxalato chromate(III) tri-hydrate					
6	Synthesis of hexa-ammine cobalt(III) chloride					
7	Synthesize the bis-(N, N'-di-salicyl-ethylene-diamine)-µ-aqua-dicobalt (II)					
8	Color effects due to ligand-exchange in nickel complexes: the experiment describes the simpler demonstration of ligand-field strength in the spectrochemical series					
9	Acidic and basic salts: the experiment consequences	describes the	e hydrolysis of	salts and its		
10	Color effects in aqueous systems containing divalent 3d metal ions: the experiment describes the demonstration of crystal-field splitting parameters of 3d metal ions					
References	 Handouts of all the experiments in full details shall be provided A Collection of Interesting General Chemistry Experiments, A.J. Elias, Universities Press, 2002 					
Course Outcomes	 CO1. Student will be exposed to advance inorganic synthetic methods that may include the use of Schlenk line, solvent drying procedures. CO2. Student will understand the commercial importance of inorganic catalysts that are used to propel various organic reactions. CO3. Student will get to prepare the inorganic complexes that they study in their inorganic chemistry, photo-inorganic chemistry courses. A hands- 					

with solar energy conversion.

Organic Chemistry Lab-I (21CYP502)					
Prerequisite:Basic understanding of practicalLTPhandling of chemicals and basic chemistry.					
Type: Core Co	ourse	0	0	4	
	ription: To provide practical training on on the synthesis of various organic compound			nixtures of organic	
Course Conte	ent				
Module 1 (P)	Qualitative Analysis Separation, purification and identification chemical methods. Wherever possible a	•	•		
Module 2 (P)	Module 2 (P) Organic Synthesis involving two steps. (Synthesis of Organic Compounds) 1. Acetylation of salicylic acid, aniline, and other organic molecules. 2. Benzoylatinon of aniline and phenol. 3. Preparation of lodoform from ethanol and acetone. 4. Nitration Preparation of m-dinitrobenzene Preparation of p-nitroacetanilide 5. Halogenation Preparation of p-bromoacetanilide 7. Diazotization/coupling Preparation of methyl orange and methyl red. 7. Oxidation: Preparation of benzoic acid from toulene. 8. Reduction: Preparation of aniline from nitrobenzene Preparation of methyl orange and methyl red.				
Reference Books	 Experiments and Techniques in Organic Chemistry, D.P. Pasto, C. Johnson and M. Miller, Prentice Hall. Macroscale and Microscale Organic Experiments, K.L. Williamson, D.C. Health. Systematic Qualitative Organic Analysis, H. Middleton, Adward Arnold. Handbook of Organic Analysis-qualitative and quantitative. H. Clark, Adward Arnold. Vogel's Textbook of Practical Organic Chemistry, A.R. Tatchell, John Wiley 				
Course Outcome	CO1. Separate and identify different or CO2. Synthesize organic compounds ar equipment	•			

Physical Chemistry Lab-I (21CYP503)					
Prerequisite: Basic understanding of fundamental L T P Physical Chemistry Image: State of the state of					
Type: Core Cou	urse	0	0	4	
Course Object	ive: To familiarize the students with the	practice of exp	erimental phys	ical chemistry	
Course Conter	nt				
Experiment 1	Determination of the molecular formula of copper-ammonia complex by the partition coefficient method				
Experiment 2	Catalytic constant of an acid				
Experiment 3	Effect of ionic strength on the rate of p	ersulphate-iodi	de reaction		
Experiment 4	Complex ion composition by job's mether	nod			
Experiment 5	Kinetics of the iodide-hydrogen peroxide clock reaction				
Experiment 6	Velocity constant of the base-catalyzed hydrolysis (saponification) of ethyl acetate				
Experiment 7	Determination of the heat of solution of oxalic acid from its solubility at different temperatures				
Experiment 8	Association constant of benzoic acid				
Experiment 9	Study of influence of ionic strength on the solubility of CaSO ₄ and determination of its thermodynamic solubility product and mean ionic activity				
Experiment 10	Conductometric determination of critical micellar concentration				
Experiment 11	Kinetics of crystal violet hydrolysis by colorimetric methods				
Experiment 12	Study of a model antibiotic reaction using colorimetry (crystal violet as model antibody)				
Experiment 13	Determination of E° of ferricyanide-forrocyanide system				
Experiment 14	pKa determination of a weak acid by pH-metric method				
Experiment 15	Numerical Experiment: Least square method, Correlation coefficient, Newton- Raphson method				
Reference Books	 C.Garland, J. Nibler and D.Shoemaker, Experiments in Physical Chemistry, McGrawHill Education; 8th Edn., 2008 B. Viswanathan and P. S. Raghavan, Practical Physical Chemistry, Viva Books Pvt. Ltd. 				

	3. Halpern, A. M. McBane, G. C., Experimental Physical Chemistry: A Laboratory Text Book, W. H. Freeman.
Course Outcomes	 CO1. Design and conduct experiments CO2. Apply the principles of thermodynamics, kinetics, spectroscopy and various other topics presented in the physical chemistry courses, in experiments CO3. Use different instrumental methods of analysis and estimation CO4. Analyze and interpret experimental data

Analytical Chemistry Lab-I (21CYP504)						
-	Prerequisite: To impart practical knowledge of analysing samples by analytical techniques L T P					
Type: Core cou	irse	0	0	4		
 Course Description: To enable the students to acquire advance knowledge of analytical techniques for various applications Handling of Flame photometer, UV-Vis spectrophometer, HPLC, GC, Ion chromatograph and spectrofluorometer 						
Course Conter	nt					
Experiment 1	Estimation of Na and K in natural wate	r and ORS by f	ilame photome	ter		
Experiment 2	Determination of organochlorine pestic	ides in food by	gas chromato	graphy		
Experiment 3	Determination of Nickel in environmental samples by AAS					
Experiment 4	Estimation of Calcium in cement solution by spectrophotometer					
Experiment 5	Determination of ion exchange capacity of a cation exchange resin (Dowex-50) anion exchange resin (Amberlite-IRA 400).					
Experiment 6	Colorimetric determination of Iron in unknown water sample					
Experiment 7	Thermal decompositions of calcium oxalate monohydrate					
Experiment 8	Separation of organic mixture by Thin layer Chromatography					
Experiment 9	Estimations of fluoride ions in drinking water by spectrophotometer					
Experiment 10	Polarographic estimation of Pb, Sn, Ni and Zn in a copper alloy					
Experiment 11	Estimation of power of LED light using chemical actinometry					
Experiment 12	Determination of ascorbic acid in vitamin-C tablet					
Reference Books	 Christian G.D., Dasgupta P.K., Schug K.A., "Analytical Chemistry" 7th Ed., Wiley 2013 Mendham J., Denny R.C., Barnes J.D. and Thomas M.J.K., "Vogel's Text Book of Quantitative Chemical Analysis" 6th Ed., Pearson Education 2004 Skoog D.A., West D.M., Holler F.J. and Crouch S.R., "Fundamentals of Analytical Chemistry" 8th Ed., Thomson Brooks/Cole.2004 Fifield F.W., and Kealey D., "Principles and Practice of Analytical Chemistry", 5th Ed., Blackwell Science. 2000 Ewing G.W., "Instrumental Methods of Chemical Analysis", 5th Ed., McGraw Hill. 2004 					

Course outcomes	 CO1. Students will be able to understand importance of analytical tools in industry as well as in day by day applications CO2. Students will be able to learn about working of various analytical equipment's and their uses CO3. Students will learn basics as well advanced knowledge about use of analytical tools CO4. Hands on training will make students more carrier oriented
--------------------	--

Advanced Organic Chemistry (21CYT513)					
Prerequisite: Ba	sic organic chemistry	L	т	Р	
Type: Core Cour	se	3	1	0	
Course Description: To impart knowledge of stereochemistry, structure reactivity relationship, reactive intermediates, mechanism of general organic reactions and Aromaticity.					
Course Content					
Module 1 (10L)	dule 1 (10L) Stereochemistry and Conformation Basic concepts and principles in Stereochemistry. Chirality, Isomerism, Methods of resolution of isomers. Conformation analysis of acyclic and cyclic compounds, Neighbouring group participation.				
Module 2 (12L)	Reaction Mechanism: Structure and Reactivity Reactive intermediates; Generation, structure, stability and reactivity of carbocation, carbanions, free radicals, carbenes, nitrenes, and benzyne. Mechanistic aspects of Thermodynamic and kinetic control, Hammond's postulate, Curtin-Hammett principle, potential energy diagrams, transition state and intermediates, methods of determining mechanisms, isotopic labeling.				
Module 3 (8L)	Reaction mechanism: Structural Effects on Stability and Reactivity Effects of structure on reactivity, resonance and field effects, steric effects, quantitative treatment. The Hammett equation and linear free energy relationship, substituent and reaction constants, Taft equation, Hard Soft Acid Base concept				
Module 4 (10L)	Nature of Bonding in Organic Molecules Aromaticity; Hückel's rule, Benzenoids and non-benzonoids, annulenes, anti- aromaticity and homo-aromaticity Bonds weaker than covalent-addition compounds and crown ether complexes and cryptands, inclusion compounds and catenanes and rotaxanes				
Reference Books	 Advanced Organic Chemistry, Reactions Mechanisms and Structure, J. March. John Wiley. Advanced Organic Chemistry, F.A. Carey and R.J. Sunderg, Plenum. A Guide Book to Mechanism in Organic Chemistry, Peter Sykes, Longman. Structure and Mechanism in Organic Chemistry, C.K. Ingold, Cornell University Press. Organic Chemistry, Paula Yukanis Bruice, Pearson. Organic Chemistry, J. Clayden, N. Greeves and S. Warren, Oxford University Press. 				
Course Outcomes	CO1. Identify and differentiate prochi and helices and determine the	-	-	, axis, planes	

CO2. Evaluate the stability of various conformers of acyclic and cyclic systems using steric, electronic and stereoelectronic effects and correlate them to reactivity.
 CO3. Analyze the role of reactive intermediates such as carbocations, carbanions, nonclassical carbocation in the chemical reactions. CO4. Demonstrate effect of structure on reactivity.
CO5. Explain nature of bonding in organic molecules with understanding of aromaticity, antiaromaticity and homoaromaticity.

Bonding in Main Group Elements and Transition Metal Organometallic Chemistry (21CYT514)						
	erequisite: General knowledge on chemical L T P nding, structure and geometry. Periodic properties					
Type: Core Cours	se	3	1	0		
 Course Description: To enable students to understand the bonding in main group elements compounds Introduce students to the organometallic chemistry of the transition metal Introduce students to the chemistry of f-block elements 						
Course Content						
Module 1 (20L)	Bonding in Main Group Element Inorganic chains, rings, cages and clusters in main group element chemistry, element-element bonds, Synthesis, Properties and Structure of halides and oxides, Phosphorus and Sulfur. Synthesis, properties and structure of boranes, carboranes, borazines, silicates carbides, Silicones, phosphazenes, sulphur- nitrogen, phosphorous-nitrogen compounds, peroxo compounds of boron, carbon and sulphur, oxy-acids of Nitrogen, phosphorus, sulphur and halogens, inter-halogens, pseudo-halides and noble gas compounds					
Module 2 (5L)	Concept of Acid base Lewis acid – Lewis base adducts, Frustrated Lewis Pairs (FLPs) – concepts and mechanism, heterolytic cleavage of molecular hydrogen, activation of other inert small molecules, and uses in symmetric and asymmetric catalysis					
Module 3 (18L)	Transitionmetal organometallic Chemistry σ - Bonded molecules: metal-alkyls, -aryls and -hydrides; synthesis, reactivity and stability of metal-carbonyls, metal-phosphines, metal-nitrosyls and metal- isocyanides, structures, reactivity and bonding in metal-carbenes, metal- carbynes - Fischer carbenes and Schrock carbenes, complexes with N- heterocyclic carbenes - application in olefin metathesis reactions π - Bonded molecules: metal-olefins, -alkyls, -alkynes, -dienes - structure, bonding and reactivity					
References	 Advanced Inorganic Chemistry, F.A. Cotton & Wilkinson, John Wiley Inorganic Chemistry (Fourth Edition), J.E. Huheey, E. A. Keiter, R. L. Keiter (Pearson publishers) Chemistry of the elements (Second Edition), N.N. Greenwood and A. Earnshaw (Elsevier publishers) Robert H. Crabtree, The Organometallic Chemistry of the Transition Metals, John Wiley and Sons, 4th edition. John Wiley and sons 2005. 					
Course Outcomes	CO1. Compare the bonding in main group elements and discuss the chemistry of Si, B, C based compounds					

 CO2. Know the different definitions of acids/bases and predict the reactions between acids and bases CO3. Understand the principles of electronic structure, bonding and reactivity of organometallic complexes CO4. Recognize the concept of synthesis and stability of transition metal organometallic complexes
CO5. Apply the principles of transition metal complexes in understanding the magnetic properties of coordination complexes and solid state energetics

Classical and Statistical Thermodynamics (21CYT515)				
	sic understanding of and Quantum Mechanics	L	т	Р
Type: Core Course310				0
statistical mechai	es: In this course student will learn the nics. This is absolutely essential for a nolecules to black holes and galaxies.			-
Course Content				
Module 1 (9L)	Classical Thermodynamics: Revie Transformation, Theormodynamic equilibrium, Partial molar quantitie equations for open systems, Phas systems, Thermodynamics of electro	potentials and s and chemi e behaviour c	d there role cal potential, of one and tw	in chemical Fundamental o component
Module 2 (13L)	Statistical Thermodynamics : Concept of ensembles, partition functions and distributions, microcanonical, canonical and grand canonical ensembles, canonical and grand canonical partition functions, Boltzmann, Fermi-Dirac and Bose-Einstein distributions, Canonical partition function for interacting particles, intermolecular potential (Lennard-Jones, Hard-sphere and Square-well) and virial coefficients, Einstein and Debye models for Heat capacity of Solids			
Module 3 (12L)	Molecular Reaction dynamics : In Radiation-Chemical Reaction, Comp Homogeneous Catalysis, Activation Theory, RRKM theory	osite Reaction	ns, Reactions	on Surfaces,
Module 4 (6L)	Transport Phenomena : Phenomena Ionic conductivity, Debye-Hückel Einstein Relation	0	•	
References	 Text Books 1. D.A. McQuarrie, Statistical Thermo 2. B. Widom, Statistical Mechanics: A Cambridge, 2002 3. S. Glasstone, An Introduction to El 4. K. J. Laidler, Chemical Kinetics, Per 5. J. Rajaram, J. C. Kuriacose, Chem Reference Books 1. D. Chandler, Introduction to Moder 	Concise Introd ectrochemistry earson, 1997 ical Thermodyr	duction for Che , Maurice Pres namics, Pearso	emists, s, 2011 on, 2013

Outcome	 CO1. Learn basic concepts of thermodynamics and statistical mechanics CO2. Understand the fundamental concepts of reactions in molecular level CO3. Learn how to use the thermodynamics concepts in various important chemical processes.

	Spectroscopy and its Applic	ations (21CY	T516)	
-	To impart knowledge for spectral on multiple spectroscopic data	L	т	Р
Type: Core Cou	se 3 1 0			
To facili on the sA small	ption: le the students to understand the applic tate the student to interpret the unknow pectral analysis portion enables to understand the appli rstand the biological processes and mate	n organic and	inorganic com	pounds based
Course Conter	nt			
Module 1 (4L)	Ultraviolet and Visible spectroscopy transition associated to conjugated Woodward rules. Electronic spectra of	and extended	d conjugated	•
Module 2 (4L)	Infrared-Spectroscopy: Introduction and identification of functional groups, hydrogen bonding etc., metal ligand vibrations			
Module 3 (3L)	Raman Spectroscopy: Introduction and identification of chemical compounds, materials, nano-materials and in imaging applications.			
Module 4 (9L)	Nuclear Magnetic Resonance Spectroscopy : General introduction, definition and applications of ¹ H and ¹³ C NMR spectroscopy including two dimensional NMR COSY, NOESY, NOE, DEPT, INEPT techniques in the structural determination of complex organic systems. Application in conformational analysis. Multinuclear NMR of various inorganic, bioinorganic, and industrial organometallic compounds.			
Module 5 (8L)	Mass Spectrometry: Introduction, id analysis, ion abundance, molecular rearrangement, Examples of mass spe HRMS technique	ion peak, m	etastable pea	k. McLafferty
Module 6 (3L)	Structural elucidation of unknown of application of UV, IR, NMR and mass		organic compo	ounds by joint
Module 7 (3L)	X-Ray Photo-Electron Spectrosco determine atomic charges, oxidation r some cases molecular structures			
Module 8 (3L)	Mossbauer Spectroscopy: Basic Mossbauer parameters of 57Fe, 99R special applications: Solid state re exchange, electron transfer, isomerism	u, 101Ru, 195 eactions, ther	Pt, 193Ir and mal decompo	110Sn. Some sition, ligand

Module 9 (3L)	Electron Spin Resonance spectroscopy: Introduction, analysis of ESR spectra of systems in liquid phase, radicals containing single set, multiple sets of protons, triplet ground states. Transition metal ions. Rare earth ions, ion in solid state, in Biological applications
References	 Physical Methods in Chemistry, RS Drago, 2nd edn., Saunders, 1992 Carbon-13 Nuclear Magnetic Resonance Spectroscopy, G. C. Levy, R. L. Lichter and G. L. Nelson, Wiley, 1980 NMR Spectroscopy - An Introduction, H. Gunther, John Wiley, 1980. Basic One- and Two-Dimensional NMR Spectroscopy, H. Friebolin, VCH, 1991 Spectroscopic Methods in Organic Chemistry, D. H. Williams and I. Fleming, 4th ed., 1988 Spectrometric Identification of Organic Compounds, R.M. Silverstein, G.C. Bassler and T.C. Morrill, John Wiley & Sons, New York, 5th Ed. 1991. Interpretation of Mass Spectra, F. W. McLafferty, 1980 Electron Paramagnetic Resonance, Elementary Theory and Practical Applications, Weil, John A, J. R. Bolton, and Wertz, J. E, Wiley-Interscience, New York, (1994) Structural Methods in Inorganic Chemistry, E. A. V. Ebsworth, D. W. H. Rankin, & S. Cradock, 2nd Ed. 1991, CRC Press, Boca Raton, Florida
Course Outcomes	CO1. Interpret the unknown compounds and molecules CO2. Understand the transformation in materials and nanostructures CO3. Differentiate between similar compounds and materials

	Inorganic Chemistry Lab	-II (21CYP50	9)	
Prerequisite: quantitative re	Understanding of qualitative and eactions	L	т	Р
Type: Core C	Course	0	0	4
Using advance	Course Description: Using advanced methods to prepare inorganic complexes and introduce state-of-the art methods like NMR, IR, UV-VIS, HRMS, electrochemical methods to characterize them			e art methods
Course Cont	ent			
Experiment Number	Tiles of the	e Experiment		
1	Preparation of Chromium (III) SALEN co	mplex.		
2	Preparation of Mn(III)(acac) ₃ complex			
3	Synthesis and characterization of tris-trip	henylphosphin	e copper(I) nit	rate
4	Synthesis of Cp*Co(CO) ₂ /(CpMo(CO) ₃ dia	amer		
5	Synthesis and characterization of [Ru(p-	cymene)(Cl) ₂] ₂		
6	Synthesis of [Pd(PPh ₃)] ₄ and performing a Suzuki-Miyaura coupling reactions between aryl boronic acid and aryl halides			
7	Preparation of standard inorganic dyes namely: N3 and N719 dyes. (These are ruthenium complexes with bipyridine/terpyridine ligands.)			
8	Preparation of miniature- DSSC using from fruit pulp and comparing its I- V characteristics with any one standard inorganic dye (N3 or N719)			
9	Synthesis of Fe(bpy)₃Complex			
10	Preparation and characterization of sodiu	um hexanitrocc	balt (III)	
11	Inorganic Nanomaterials: Synthesis and Applications			
Reference	Complete manual shall be provided for the experiments			
Course Outcomes	 CO1. Student will be exposed to advaninclude the use of Schlenk line, so CO2. Student will understand the commerare used to propel various organic CO3. Student will get to prepare the incompanic chemistry, photo-inorgeneration of the preparing standard description. 	olvent drying pr prcial importanc reactions. organic comple janic chemist	ocedures. e of inorganic xes that they s ry courses.	catalysts that study in their A hands-on

	energy conversion.	
--	--------------------	--

	Organic Chemistry La	b-II (21CYP5	10)	
Prerequisite: handling of ch	Basic understanding of practical emicals and basic chemistry	L	т	Р
Type: Core Co	ourse	0	0	4
	ription: To provide practical training on q			functional groups
Course Conte	ent			
Module 1 (P)	 Quantitative Analysis Determination of the percentage of compound by acetylation method. Estimation of amines/phenols using the percentage of the p	promate bromic	de solution/or a	cetylation method.
Module 2 (P)	 II. Extraction of organic compounds from 1. Isolation of caffeine from tea leave 2. Isolation of casein from milk. 3. Isolation of lactose from milk. 4. Isolation of nicotine dipicrate from 5. Isolation of piperine from black pe 6. Isolation of lycopene from tomator 7. Isolation of fructose from sugar. 	es. tobacco. pper.	es:	
Reference Books	 Experiments and Techniques in Orga Miller,Prentice Hall. Macroscale and Microscale Organic Systematic Qualitative Organic Analy Handbook of Organic Analysis-qualita Vogel's Textbook of Practical Organic 	Experiments, Ł sis, H. Middlete ative and quant	K.L. Williamson on, Adward Arr titative. H. Clarl	, D.C. Health. nold. k, Adward Arnold.
Course Outcome	CO1. Able to determine hydroxyl group CO2. Able to determine saponification CO3. Gain hands on practice for isolation	/alue of fats/oil	s.	

Physical Chemistry Lab-II (21CYP511)				
-	site: Basic understanding of MathematicsLTPamental Physical Chemistry			
Type: Core Cou	urse	0	0	4
Course Object physical chemis	t ive: To familiarize the students with the stry	e practice of e	experimental a	nd theoretical
Course Conter	nt			
Experiment 1	Conductometric titration of mixture of a AgNO ₃) using conductivity bridge	acids and preci	pitation titratior	n (KCI Vs
Experiment 2	Kinetic study of iodination of aniline (ar	nalytical and co	olorimetric met	nod)
Experiment 3	Verification of Walden's rule			
Experiment 4	Determination of specific rotation of tar	taric acid by po	plarimetric met	hod
Experiment 5	Determination of isoelectric point of ge	latin by viscosi	ty measureme	nt
Experiment 6	Phase diagram of two component simp	ole eutectic sys	tem	
Experiment 7	Determination of Planck's constant and method	I work function	of metals usino	g photoelectric
Experiment 8	A computational experiment of the en reaction	do versus exo	preference in	a Diels–Alder
Experiment 9	A mechanistic study of the Wittig react	ion		
Experiment 10	Dissociation of the ethyl radical.			
Experiment 11	Theoretical Hammett Plot for the gas phenol.	s-phase ioniza	tion of benzoi	c acid versus
Experiment 12	Computing the fundamental rotational-	vibrational ban	d of CO and N	О.
Experiment 13	Calculating the tunneling splitting of an	nmonia inversio	on.	
Experiment 14	Determination of Pauling's electronega	itivity		
Experiment 15	Verification of Trouton's rule, determination	ation of correla	tion coefficient	
Experiment 16	Verification of Stirling approximation			

References	 C.Garland, J. Nibler and D.Shoemaker, Experiments in Physical Chemistry, McGrawHill Education; 8th Edn., 2008. B. Viswanathan and P. S. Raghavan, Practical Physical Chemistry, Viva Books Pvt. Ltd. Halpern, A. M. McBane, G. C., Experimental Physical Chemistry: A Laboratory Text Book, W. H. Freeman. Journal of Chemical Education, ACS Publication.
Course Outcomes	CO1. Design and conduct experiments CO2. Use different instrumental methods of analysis and estimation CO3. Analyze and interpret experimental data CO4. Understand theoretical concepts of chemical reactions

	Analytical Chemistry Lab	o-II (21CYP51	2)	
-	o impart practical knowledge of les by analytical techniques	L	Т	Р
Type: Core Cou	Type: Core Course004			
To enable applicationHandling	 Course Description: To enable the students to acquire advance knowledge of analytical techniques for various applications Handling of Flame photometer, UV-Vis spectrophometer, HPLC, GC, Ion chromatograph and spectrofluorometer 			
Course Conter	nt			
Experiment 1	Flame emission spectrometric determi	nation of Sodiu	m	
Experiment 2	Determination of carbamate pesticides in food by high performance liquid chromatography			
Experiment 3	Estimation of Ca in hardwater and dru	Estimation of Ca in hardwater and drugs by flame photometer		
Experiment 4	Ion exchanger determination of Ca+2 and Mg+2 (hardness causing ions)			
Experiment 5	Determination of metals by Atomic absorption spectrophotometry			
Experiment 6	Fluorometric determination of Riboflavin (Vit B2)			
Experiment 7	Qualitative and quantitative analysis of fruit juices for vitamin C using high performance liquid chromatography			
Experiment 8	Determination of phenylenediamines and quinones by Polarography			
Experiment 9	Determination of toxic metals by ion ch	nromatograph		
Experiment 10	Estimation of copper in brass			
Experiment 11	Column chromatographic separation of organic/inorganic mixtures			
Experiment 12	Analysis of Analgesic using high performance liquid chromatography			
Reference Books	 Christian G.D., Dasgupta P.K., So Wiley 2013 Mendham J., Denny R.C., Barnes J of Quantitative Chemical Analysis" Skoog D.A., West D.M., Holler Analytical Chemistry" 8th Ed., Thor Fifield F.W., and Kealey D., "Princi 5th Ed., Blackwell Science. 2000 	D. and Thoma 6th Ed., Pears F.J. and Crou nson Brooks/C	s M.J.K., "Vog on Education 2 ch S.R., "Fur ole.2004	el's Text Book 2004 idamentals of

	5. Ewing G.W., "Instrumental Methods of Chemical Analysis", 5th Ed., McGraw Hill. 2004
Course outcomes	 CO1. Students will be able to understand importance of analytical tools in industry as well as in day by day applications CO2. Students will be able to learn about working of various analytical equipment's and their uses CO3. Students will learn basics as well advanced knowledge about use of analytical tools CO4. Hands on training will make students more carrier oriented

Chemistry for Renewable Energy (21CYT801)				
Prerequisite : Understanding of basic chemistry and physics at undergraduate level.		L	т	Р
Type: Open Elective		3	0	0
Course Description: To study the basic principles that govern the light induced chemical processes that can be utilized to the benefit of society (power generation or newer materials)				
Course Content				
Module 1 (10 L)	Basic Photochemistry Molecular ground and excited states, radiative and non-radiative deexcitation, Jablonski diagram, potentialenergy surfaces, reaction dynamics, electron and energy transfer, absorption and emission characteristics, excited state lifetime, electroluminescent molecules, and their use in photonic devices, experimental techniques, Franck-Condon Principle, Energy transfer, Excimer, Exciplex, quenching and sensitization.			
Module 2 (10 L)	Electrochemical Methods and Devices Chronoamperometry, cyclic voltammetry (interpretation using transition metal complexes), and spectro-electrochemistry; electrodes and electrochemical processes of relevance to energy conversion, photo-electrochemical cells, light sources, photodetectors and device design and measurements.			
Module 3 (10 L)	Solar Cell Technology Principles for conversion of solar energy to electricity, Shockley-Queisser limit, tandemsolar cells. Different solar cell technologies (inorganic, organic, hybrid) with specific reference to dye sensitized solar cells and perovskite technology. Recombination processes in solar cells. Basic and advanced characterization methods for solar cells and solar cell materials. Integration of solar cells into modules.			
Module 4 (12 L)	Molecular Systems for Renewable Energy Molecular approaches to solar fuel production, structures and mechanisms of biocatalysts and artificial catalysts for water oxidation, carbon dioxide fixation, nitrogen fixation, oxygen reduction and hydrogen formation, principles governing design of molecular catalysts in oxidative and reductive reactions, structural aspects, thermodynamics, kinetics, proton coupled electron transfer and over- potentials for catalytic reactions, strategies to optimize catalytic activity, robustness and efficiency of catalysts made of earth-abundant elements, how to define and measure solar-to-fuel energy efficiencies and the stabilities of catalytic systems.			

Reference Books	 Principles of Fluorescence Spectroscopy, Lakowicz, III-Edition, Springer. Highly Efficient OLEDs with Phosphorescent Materials, Wiley- VCH Verlag GmbH & Co., 2007 Organic Photochemistry and Photophysics, V. Ramamurthy, Kirk S. Schanze, CRC Press. Photochemistry and Photophysics: Concepts, Research, Applications, VincenzoBalzani,Paola Ceroni,Alberto Juris, 2014. Molecular Fluorescence: Principles and Applications, Bernard Valeur, Mário NunoBerberan-Santos Photochemistry and Photophysics: Concepts, Research, Applications, Vincenzo Balzani,Paola Ceroni,Alberto Juris, 2014. Electrochemical Methods: Fundamentals and Applications, 2nd Edition, Allen J. Bard, LarryR. Faulkner, 2000\ Photochemistry of Organic Compounds from concepts to practice, Petr Klan and Jakob Wirz, Wiley, 2009.
Course Outcomes	 CO1. Describe and explain photochemical and photo-physical processes and mechanisms with suitable theoretical models and apply established experimental methods for the investigation of these processes CO2. Describe the interaction of excited states with their surroundings and analyses photo-induced electron transfer and excitation energy transfer with quantitative models CO3. Apply knowledge about photochemical and photo-physical processes and the reactivity of excited states to explain applications in photochemical energy conversion and other selected issues

Environmental Chemistry (21CYT802)				
Prerequisite: To chemistry	impart knowledge of environmental	L	т	Р
Type: Open Electi	ve	3	0	0
Course Description: Students will acquire knowledge of importance of environmental chemistry, an interdisciplinary science that involve physics, chemistry, life science and agriculture etc. They will understand importance of protection and conservation of our environment and need to restrain anthropogenic activities responsible for extensive release of pollutants in environment.				ill understand
Course Content				
Module 1 (5L)	Introduction: concept and importance of environmental chemistry. Environmental segments, Natural and Man-made Disasters, green chemistry, Environmental sampling			
Module 2 (10L)	Atmosphere: Composition and structures of Atmosphere, Vertical temperature profile, Properties of troposphere, Temperature inversion. Particles, ions and radicals in atmosphere, chemical and photochemical reactions in atmosphere, Mechanism of Ozone formation and catalytic Ozone depletion, Control Strategies			
Module 3 (10L)	Water Pollution: Water pollutants, Eutrophication, dye, Pesticides, phenols, toxic metals as Pollutants, chemical speciation, water quality parameters and standards, sampling and preservation, Monitoring techniques and methodology, Fluorosis			
Module 4 (10L)	Air Pollution: Air pollutants and their classifications. Carbon mono-oxides, Nitrogen oxides, Hydrocarbons and photochemical smog, Aerosols-sources, size distribution and effect on visibility, climate and health. Major greenhouse gases and their sources and Global warming potentials. Climate change and consequences. Acid rain precursors and their aqueous and gas phase atmospheric Oxidation reactions. Damaging effects on aquatic life, plants, buildings and health. Monitoring of SO2 and NOx. Acid rain control strategies.			
Module 5 (5L)	Chemical toxicology: Toxic chemicals in the environment, Impact of toxic chemicals on enzymes, biochemical effects: CO, NOx, SO _x , Ozone and PAN, Cyanides and pesticides; Carcinogens, Bio-warfare Agents, Environment and public health			

Reference Books	 Environmental Chemistry, Colin Baird, W.H. Freeman Co. New York, 1998. Chemistry of Atmospheres, R.P. Wayne, Oxford. Environment Chemistry, A.K. De, Wiley Eastern, 2004. Environmental Chemistry, S.E. Manahan, Lewis Publishers.
Course Outcomes	 CO1. Students will be able to understand that environmental chemistry is a part of environmental educations CO2. They will get the knowledge of chemistry involved in atmosphere, air pollution, and water pollution CO3. Information about the various environmental episodes

Introduction to Density Functional Theory (21CYT803)					
Prerequisite: Basic understanding of Quantum L T P Chemistry Image: Chemistry <t< td=""></t<>					
Type: Open Elec	tive	3	0	0	
mechanical mode	Course Description: Density-functional theory (DFT) is a modern computational quantum mechanical modelling method which is used in almost every branch of sciences and engineering In this course student will learn basic principles of DFT with emphasis on in hand experience of DFT calculations.				
Course Content					
Module 1 (4L)	Review of Quantum Mechanics: Eigen value problem, exactly solvable	•		ger Equation,	
Module 2 (14L)	Many electron problem: Pauli ar Hartree-Fock Theory, Configuration	• • •	•		
Module 3 (14L)	Density based approach: Thomas-Fermi model, Hohenberg-Kohn theorems, Kohn-Sham equations, Exchange and correlation functionals, Local density approximation, Generalized gradient approximation, Adiabatic connection, Hybrids functionals.				
Module 4 (8L)	Popular Functionals: B3LYP, PBE, E	33LYP-D, Minne	esota Function	las etc.	
Module 5 (8L)	Solid state calculations: Bloch The Transformation, Band calculation.	orem, Periodic	boundary con	dition , Fourier	
References	 Text Books: 1. Koch and Max C. Holthausen; A Chemist's Guide to Density Functional Theory (Wiley) 2. David S. Sholl and J. A. Steckel ; Density Functional Theory: A Practical Introduction (Wiley-Interscience) 3. C. Fiolhais, F. Nogueira, Miguel A.L. Marques; A Primer in Density Functional Theory (Springer) Reference Books: 1. Robert Parr; Density-functional theory of atoms and molecules (OUP USA) 2. A. Szabo and N. S. Ostlund; Modern quantum chemistry (Dover Publications) 				
Course Outcome	 CO1. It will give a broad idea about how a multi-electron electronic structure problem can be solved. CO2. This course will also give some in hand experience for performing DFT calculations along with introduction of many modern DFT functional. 				

	Atmospheric Chemistry (21CYT80	4)		
Prerequisite: Hig	gh School Chemistry, Physics and Mathematics	L	т	Р
Type: Open Elec	tive	3	0	0
-	ion: This course is designed to provide an overview composition, behaviour and evolution of Earth's atmons			•
Course content				
Module 1 (5L)	Composition, Structure, and Transport in the Composition: Units, Table of Composition, Pressure Structure: Barometric Law for gases a actual atmosphere Temperature Structure Transport mechanisms and timescales: Vertical a	t equilibr	ium, Sca	ale height for
Module 2 (4L)	Photochemistry Factors affecting light flux: Common Factors, Solar Zenith Angle, absorption, Rayleigh scattering, Graphs illustrating light flux Rates of Photolysis: Rate Law, Calculating a photolysis rate constant, NO2 as example. Calculation of SZA and photolysis rate constant, photolysis of O3 as a source of O(1D) and O(3P)			
Module 3 (6L)	Kinetics First and Second Order, elementary vs. composite, pseudo-first order approximation, Steady State Approximation, Arrhenius expression, Transition state theory: canonical and variational, RRKM theory, master equation, quantum mechanical tunneling			
Module 4 (10L)	Stratospheric Ozone Chapman Cycle, Ozone-Destroying Catalytic O Propagation, Termination, Null Cycles, Coupling radical replacements, Effectiveness of Initiation and Termination: Thermodynamics and kinetics of HX formation, Pl Decadal Ozone Loss, Night and Day/Summer and Observations of the Ozone Hole: [O ₃] vs time and competing hypotheses, The smoking gun Meteorology and Chemistry Needed for Ozone H (PSC) formation, Reactions on PSCs, Gas phas vs. Antarctic, Closing the hole Heterogeneous Chemistry Outside the Polar V (Junge) Layer (SSL), Reaction of N2O5 on SSL, I	families CI vers hotolysis d Winter d altitude ole: Pola e reaction	s, CFCs of HO _X a , the pola on Stratos ons and o Stratosp	and their r halogens, and XONO ₂ ar vortex and pheric Cloud cycles, Arctic heric Sulfate

Module 5 (4L)	Tropospheric Ozone Catalytic Cycles Producing Ozone: Photostationary State, Cycles consuming CO, Cycles consuming hydrocarbons Propagation vs. Termination, Radical Sources and Concentrations, Kinetics of barrierless reactions, Photochemistry, Meteorology of Ozone, NOx- vs. VOC- limited Ozone Formation, Modeling, Dry Deposition
Module 6 (4L)	Atmosphere as an oxidizing medium: Fate of Alkanes, Kinetic overview, Reactions initiated by OH Fate of Alkenes: Kinetic overview, Reactions initiated by OH, NO ₃ and O ₃ , Night versus Day, Fate of Aromatic Hydrocarbons, Oxygenates: Alcohols, Aldehdyes
Module 7 (4L)	Aqueous Aerosols in the Troposphere Liquid Water in the Atmosphere, Henry's Law, Introduction, Monoprotic acids, Aldehydes, SO ₂ Oxidation, S(IV) equilibria, HSO ₄ ⁻ oxidation by HOOH, S(IV) oxidation by ozone Kinetics of Gas-Surface Interactions Aerosol Size Distributions: Size Classes, Discrete, Continuous (Normal, Semi- log, Log-log)
Module 8 (5L)	Global Climate Change Black Body Model of Earth's temperature, Greenhouse Effect, Clouds, Temperature Record, Radiative Forcing and Absolute and Relative Global Warming Potential, Feedbacks, Aerosol Effects, Flow of heat energy in atmosphere and its effects
References	 Text Books: J. H. Seinfeld, S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, Wiley, 2016 D. J. Jacob, Introduction to Atmospheric Chemistry, Princeton University Press, 1999 B. J. Finlayson-Pitts, J. N. Pitts Jr., Chemistry of the Upper and Lower Atmosphere: Theory, Experiments and Applications, Academic Press, 2000 K. J. Laidler, Chemical Kinetics, Pearson, 1997 Reference Books: P. Fabian, M. Dameris, Ozone in the Atmosphere: Basic Principles, Natural and Human Impacts, Springer, 2014 S. Ramachandran, Atmospheric Aerosols: Characteristics and Radiative Effects, CRC Press, 2018
Course Outcome	 CO1. Predict fate of molecules and radicals under typical atmospheric conditions. CO2. Qualitatively explain and quantitatively compute trends in photolysis rate constants with altitude, season, and time of day for molecules whose photochemistry is known. CO3. Compute rates of heterogeneous and homogeneous oxidation of S(IV).

CO4. Qualitatively predict effects of chemical perturbations on catalytic cycles producing and destroying ozone.
CO5. Explain basic principles of greenhouse effect and compute global warming potentials.
CO6. Predict major atmospheric degradation pathways of natural and anthropogenic trace gases

	Introduction to Astrochemistry (21CYT	305)		
Prerequisite: Hig	h School Chemistry, Physics and Mathematics,	L	Т	Р
Basic quantum m	Basic quantum mechanics			
Type: Open Elec	tive	3	0	0
molecular physics	tion: The course would cover topics like interste s, interstellar chemistry, molecular astronomy and u			
Course Content	1			
Module 1 (6L)	The Interstellar Medium			
	Introduction to the Interstellar Medium, Condition constituents (elemental abundances, isotopic rat cosmic rays, shocks, magnetic fields).		•	
	Structure and Evolution of the Interstellar Medium medium. Heating and cooling. Life cycle of inte Types of interstellar environments (diffuse clo forming cores, photodissociation regions)	rstellar r	natter (a	stration).
Module 2 (12L)	Atomic & Molecular Physics			
	Interaction of Radiation with Matter: Semi-classical approach, oscillator strengths and Einstein coefficients, introduction to spectroscopy. Atomic structure (principal, angular momentum, magnetic, and spin quantum numbers; fine structure; hyperfine structure), atomic spectroscopy. Structure and Spectra of Diatomic Molecules: Energy level structure (electronic, vibrational and rotational). Electronic, vibrational spectra and			
	rotational spectra. Application to H ₂ , C ₂ , CH, CO. Structure and Spectra of Polyatomic Molecules: Energy level structure of spherical, linear, symmetric, and asymmetric tops. Rotation-vibration interaction. Application to H ₃ ⁺ , C ₃ , H ₂ O, HCO ⁺ .			
	Radiative and collisional excitation processes: Radiative excitation and selection rules. Collisional excitation and de-excitation. Rotational excitation of C ₂ and CO. Radiative transfer			
Module 3 (10L)	Interstellar Chemistry:			
	H ₂ Formation and Destruction, Formation of H ₂ of	n interste	ellar grain	S.
	Chemical Kinetics and Rate Equations, Ion-Neutral Reaction Dynamics Types of chemical reactions, endo/exothermicities, activation energies, rate expressions. Langevin cross-sections and temperature independence Importance of ion-neutral reactions for interstellar chemistry.			
	Chemical Modelling, Calculation of molecular abundances using chemical reaction networks: steady state and time-dependent. Identification of primary formation/destruction pathways for individual molecules. Dependence on laboratory data. Isotopic Fractionation, Quantum mechanical effects leading to fractionation of rare isotopes in molecules, and observational evidence.			

Module 4 (14L)	Molecular Astronomy			
	Detecting interstellar molecules in the optical spectra, Principles of optical spectrographs, and echelles. Basics of Radioastronomy, Fourier transforms, single dish studies, mapping, backends for spectroscopy, Radio Interferometry, Principles of interferometry (aperture synthesis). Interstellar molecules (with special reference to CO, CH ⁺ , HCO ⁺ , H ₂ CO, NH, N ₂ H ⁺ , NH ₃ , OH, H ₂ O, H ₃ O ⁺ , C ₂ H, C ₂ H ₂ , C ₃ H, C ₃ H ₂ , CN, HCN, HNC, HCNH ⁺)			
References	 Text Books: 1. A. M. Shaw, Astrochemistry: From astronomy to astrobiology, Wiley, 2006 2. S. Yamamoto, Introduction to Astrochemistry, Springer, 2017 3. D. A. Williams and S. Vitti, Observational Molecular Astronomy, Cambridge University Press, 2013 4. P. Bernath, Spectra of Atoms and Molecules, OUP, 1995 5. K. J. Laidler, Chemical Kinetics, Pearson, 2008 			
	Reference Materials:			
	Related primary and review articles from literature, especially from Annual Review of Astronomy and Astrophysics			
Course Outcomes	 CO1. Gain basic idea about the nature of interstellar medium, classification, physical conditions and their importance in the evolution of universe. CO2. Understand the various spectroscopic features important for identifying interstellar molecules and assessing the physical conditions of the medium CO3. Understand the different chemical processes, their energetic and kinetic behaviour and importance and utilities of chemical reactions 			
	network CO4. Learn about various aspects of interstellar molecules, including their energy level structures, their spectra, their chemistry, where they have been detected, and what they tell us as astronomical probes			

Electrochemical Energy Storage Systems (21CYT806)					
Prerequisite: Ba Chemistry	sic understanding of Physical	L	т	Р	
Type: Open Elec	tive	3	0	0	
-	Course Objectives: The objective of this course is to understand the fundamentals and increase the knowledge regarding electrochemical energy conversion and storage methods.				
Course Content					
Module 1 (6L) Electrochemical Power Sources: Introduction to electrochemical energy storage, Major types of reaction mechanisms in electrochemical cells, General equivalent circuit of an electrochemical cell, Voltage and capacity of an electrochemical cell, Steady state and potential step techniques (polarography, cyclic voltammetry, Chrono methods), Electrode types for electrochemical energy storage devices					
Module 2 (9L)	Batteries: Lead-Acid Batteries, Negative and positive electrodes in lithium systems, Primary non-rechargeable batteries, Zn/MnO ₂ "alkaline" cells, Li/FeS ₂ cells, Li/I ₂ batteries, Zn/Air cells, Magnesium and aluminum based cells, Sodium/sulfur batteries, Flow batteries, ZEBRA batteries				
Module 3 (9L)	Fuel Cells: Types of fuel cells, Chemistry in different fuel cells, Single fuel cell setup, Cell potential, Cell potential-current density behaviour, Power density and efficiency of fuel cells, Methodology for analysis, Tafel slope, Electrocatalysis of fuel cell reactions, Experimental methods in low temperature fuel cells				
Module 4 (9L)	BL) Electrochemical Supercapacitors: Capacity vs capacitance, Introduction to various types of capacitors, Electrochemical double layer capacitors, Pseudocapacitors, Electrochemical flow capacitors, Supercapacitor components and materials, Instrumentation and measurement, Characterization, Performance evaluation and diagnostics of supercapacitors, Fabrication and performance evaluation of all-solid-state and wearable supercapacitors, Supercapacitor/battery hybrid systems				
Module 5 (6L)	Nanostructured Materials in Electrochemical Energy Storage Systems: Nanostructured materials for electrochemical energy systems, Nanostructured electrodes and interfaces for the electrochemical storage of energy, Nanostructuring of current collectors/active film interface, Nano-architectured current collectors, Nano-structuring of active material/electrolyte interfaces, Nanofabrication techniques for electrochemical energy storage devices			anostructured of energy, architectured of interfaces,	
Reference Books	1. D. Linden, Hand book of batteries Company, 1984.	and Fuel cells,	McGraw Hill B	Book	

	 Ali Eftekhari, Nanostructured Materials in Electrochemistry, Wiley-VCH, 2008 Allen J. Bard, Larry R. Faulkner, ELECTROCHEMICAL METHODS: Fundamentals and Applications, JOHN WILEY & SONS, INC., 2001 B.E. Conway, Electrochemical Supercapacitors, Kluwer Academic/Plenum Publisher, 1999 Supramaniam Srinivasan, Fuel Cells: From Fundamentals to Applications, Springer Science Publisher, 2006 Robert A. Huggins, Advanced Batteries, Materials Science Aspects, Springer Science Publisher, 2009 Javier Garcia-Martinez, Nanotechnology for the Energy Challenge, Wiley- VCH, 2010
Course Outcome	 CO1. Understand the basics and complex nature of electrochemical systems CO2. Learn the interface of transport phenomena, materials characterization, basic electrochemistry and system engineering CO3. Understand the interdisciplinary nature of electrochemical systems for energy. CO4. Understanding of electrochemical energy systems relevant to modern energy technologies.

Photo-Inorganic Chemistry (21CYT807)					
Prerequisite: Understanding of basic chemistry and physics at undergraduate level. L T P					
Type : Program E	Elective 3 0 0				
To study the basi	Course Description: To study the basic principles that govern the light induced chemical processes that can be utilized to the benefit of society (power generation or newer materials)				
Course Content					
Module 1 (10L)	Introduction State Diagrams-Beer Lambert law-calculation of fluorescence rate constants from absorption spectra-Dipole and transition moments, selection rules-Rate constants of internal conversion; the energy gap law-Rate constants of inter system crossing, Sayed rules-Kasha and Vavilov rules-Franck-condon principle- Energy transfer, Excimer, Exciplex, quenching and sensitization.				
Module 2 (10 L)	Techniques and Methods Light sources, filters, monochromator and detectors-Preparative Irradiation- Absorption Spectra-Steady state emission spectra-Time resolved luminescence-Quantum yields: Differential quantum yield- Actinometry- Spectrophotometric determination of the reaction progress-Reversible Photoreactions-Luminescence quantum yields-Stern-Volmer analysis-Quantum yields of triplet formation-Experimental arrangements for quantum yield measurements.				
Module 3 (10 L)	Applications Transition Metal Complexes as sensitizers, Dye-Sensitized solar cells, Pervoskite solar cells, Factors affecting the efficiency, Device Fabrication, Incident to Photon Conversion efficiency (IPCE), Sunlight to chemical feedstocks, Hydrogen and methanol alternative energy, Photo-electrochemical cells,fabrication aspects, efficiency studies, Drawbacks of using 1 st row transition metals in P-V devices, resolving efficiency issues through ligand design, inorganic nano particles-based water oxidation catalysts, Transition metal complexes in flexible displays, device structure of OLEDs, thermally activated delayed fluorescence, color tuning, aggregation induced emission, organometallic complexes in sensing applications.				

Module 4 (10 L)	Properties of Excited States Structure, dipole moment, acid-base strengths, reactivity. Excited States of Metal Complexes Excited states of metal complexes: Comparison with organic compounds, electronically excited states of metal complexes, charge transfer spectra, charge transfer excitations. Redox Reactions by Excited Metal Complexes Energy transfer under conditions of weak interaction and strong interaction-examples formation; condition of the excited states to be useful as redox reactants, excited electron transfer, metal complexes as attractive candidates, (2,2-bipyridine and 1,10-phenanthroline complexes), illustration of reducing and oxidizing character of ruthenium (bipyridal complex, comparison with Fe (bipy); role of spin-orbit coupling-life time of these complexes. Application of redox processes of electronically excited states for catalytic purposes, transformation of low energy reactants into high energy products, chemical energy into light.
Reference Books	 Principles of Fluorescence Spectroscopy, Lakowicz, III-Edition, Springer. Highly Efficient OLEDs with Phosphorescent Materials, Hartmut Yersin, 2007, Wiley- VCH. Organic Photochemistry and Photophysics, V. Ramamurthy, Kirk S.Schanze, CRC Press. Photochemistry and Photophysics: Concepts, Research, Applications, Vincenzo Balzani, Paola Ceroni, Alberto Juris, 2014.
Course Outcomes	 CO1. Understand the underlining physical principles that govern the light emitting devises. CO2. Understand the role of inorganic and organometallic complexes in the step towards clean energy devices. CO3. To familiarize with techniques and methods that have direct implication in developing new materials.

	Organometallics and Catalysis (21CYT808)			
Prerequisite: Basic knowledge of inorganic/organic and coordination chemistry L T P				Р
Type: Program E	lective	3	0	0
-	ion: To impart the knowledge and application ysis and other various metal catalyzed organi		-	netallic
Course Content				
Module 1 (4L)	Fundamental and basics of organometallic c	hemistry in	catalysis	
Module 2(4L)	Elementary organometallic reactions, Ligand substitutions; Oxidative addition; Reductive elimination; Intramolecular insertions/eliminations; Nucleophilic/Electrophilic attacks on coordinated ligands and migration reactions			
Module 3(8L)	Bimetallic complexes and metal Clusters, me	etal-metal b	ond, isolo	obal analogy
Module 4(20L)	Fundamental of catalysis, homogeneous, he TS state, TOF, TON, regio- and chemo- sele	-	s catalysi	s, concept of
Module 5 (2L)	Homogeneous catalysis Alkene isomerization, Hydrogenation, hydro-formylation, monsanto acetic acid process, alkene polymerization, cross coupling reactions; C-C, C-N, C-O and C- S bond coupling reactions (Heck, Sonogashira, Suzuki), olefin metathesis, oxidation of olefins, C-H activation and functionalization			
Module 6 (3L)	Metal clusters and catalysis, reduction using asymmetric hydrogenation.	transition m	netal hydr	ides,
Reference Books	 Robert H. Crabtree, The Organometallic Chemistry of the Transition Metals, John Wiley and Sons, 4th edition. John Wiley and sons 2005. Elschenbroich, C.; Salzer, A.; Organometallics: A Concise Introduction 3rd Edition. John Wiley and sons 2005 J. Tsuji, "Transition metal reagents and catalyst innovations in organic synthesis" John-Wiley- & Sons, Ltd, New York, 2000 			
Course Outcome	CO1. Develop the understand of fundamenta CO2. Strategy to design and synthesis the ta CO3. Metal based organic reactions, mecha CO4. New advancement in the industrial cat	arget oriente nism and ro	ed catalys le of meta	al in catalysis.

Supramolecular Chemistry (21CYT809)				
Prerequisite: coordination bon	Basic knowledge of different ds	L	т	Р
Type: Program E	Elective	3	0	0
	tion: edge of types of supramolecular Chemi Organic materials, sensors, and devices	-	bonding and	their
Course Content	:			
Module 1(10 L)	Introduction Concepts and development, Nature structures: ion-ion, ion-dipole, dipole- and van der Waal interactions, Supr Porphyrin and other tetra-pyrrole mac	dipole, H-bond amolecular Ch	ding, cation-π,	anion-π, π-π
Module 2(10 L)	Module 2(10 L) Host-guest Chemistry Synthesis and structures of crown ethers, Lariat ethers, Podands, Cryptands, Spherands, Calixarene, Cyclodextrins, Cyclophanes, Cryptophanes, Carcerands and hemicarcerands, Host-guest interactions, Preorganization and complementarity, Lock and key analogy, binding of cationic, Anionic, Ion pair and neutral guest molecules			s, Carcerands ization and
Module 3(12 L)	Supramolecular Polymers Self-assembly molecules: Design, Synthesis and Properties of the molecules, Self-assembly by H-bonding, Catenanes, Rotaxanes, Dendrimers and Supramolecular gels. Relevance of supramolecular chemistry to mimic biological system			
Module 4 (4 L)	dule 4 (4 L) Molecular Devices Molecular Electronic devices, Molecular wires, Molecular rectifiers, Molecular Switches and Molecular logic gates. Examples of recent developments in supramolecular chemistry from current literature			
References	 References Lehn, J. M., Supramolecular Chemistry-Concepts and Perspectives, Wiley – VCH (1995). Beer, P.D., Gale, P. A., and Smith, D. K., Supramolecular Chemistry, Oxford University Press (1999). Steed, J. W., and Atwood, J. L., Supramolecular Chemistry, Wiley (2000). Recent Literature 			
Course Outcomes	 CO1. Molecular recognition and natur CO2. Structures of various supramole CO3. Applications of supramolecular devices 	ecular structure	e in solution ar	nd solid state

Polymer Chemistry (21CYT810)					
Prerequisite: Ba	Prerequisite: Basic knowledge of chemistry L T P				
Type: Program E	Elective	3	0	0	
To impartTo provid					
Course Content					
Module 1 (10L)	Module 1 (10L) Introduction Introductory concepts, definition, monomers, repeat units, degree of polymerization, linear, branched and network polymers, characterization: molecular weight studies and molecular weight distribution, determination of thermal parameters, importance of polymers, Mechanistic aspects: addition, ionic, emulsion, suspension, aqueous, coordination, condensation polymerization.			aracterization: termination of ects: addition,	
Module 2 (12L)	Classification and Polymerization Classification of polymers, polymerization in homogeneous and heterogeneous systems, step-growth syntheses, chain polymerizations, ring-opening polymerizations, reductive coupling and other redox polymerization reactions				
Module 3 (12L)	Inorganic polymer elastomers Bridge between small and finite molecules, homopolar inorganic polymers, heteropolar inorganic polymers, Phosphorous based polymer: Polyphosphazenes, Sulphur containing polymer: Polysiloxanes, Polysilanes and Boron based polymer, Metal coordinated polymers				
Module 4 (8L)	Applications of inorganic polymers Catalysis, medical purposes, flame retardants, high-temperature fluids and lubricants				
Reference Books	 Textbook of Polymers Science, F.V. Contemporary Polymer Chemistry Hall. Ronald D. Archer, Inorganic and O James E. Mark, Harry R. Allcock, University Press, USA Inorganic Chemistry, Keith F. Purc 	r, H.R. Allcock rganometallic I Robert West,	and F.W. La Polymers, Wile Inorganic poly	ey-VCH, Inc. /mers, Oxford	

Course Outcomes	 CO1. Explain the classification of various types of polymers. CO2. Understand the different methods for the synthesis and characterization of the polymers.
	CO3. Demonstrate the ability to quickly acquire the knowledge of new polymer- related applications and development of new polymer materials and related processes with respect to sustainability considerations.

Organometallic Chemistry of Main Group Elements (21CYT811)					
Prerequisite: Basic knowledge of covalent and Ionic bonds. Knowledge on the periodic properties of the elementsLTP					
Type: Program E	lective	3	0	0	
To impart knowle	Course Description: To impart knowledge on the bonding and structure in Main Group Organometallic compounds and recent development in their potential applications				
Course Content					
Module 1 (4 L)	Introduction Milestones in organometallic c classification and electronegativity c of M-C bond	hemistry, org onsideration, e	5	•	
Module 2 (8 L)	Organometallic compounds of Alkali and Alkaline-Earth Metal Organo-lithium compounds, Li NMR Spectroscopy, organometallic compounds of the heavier alkali metals, organo-beryllium, -magnesium, - calcium, -strontium and -barium compounds, examples of some organo-zinc compounds, some catalytic applications of organo-magnesium and organo-zinc compounds				
Module 3 (12 L)	Organometallic Compounds of Boron group Organo-Boron, -aluminium, -gallium and -indium compounds, Al ^{III} , Ga ^{III} and In ^{III} organyls and their Lewis base adducts, sub-valent organo-aluminium compounds, Ga ^{II,I} , In ^{II,I} and TI ^{II,I} organyls, thallium in organic synthesis				
Module 4 (6 L)	Organo-element Compounds of Carbon Group Organosilicon compounds, sub-valent organosilicon compounds, organo- germanium and organo-tin compounds, sub-valent organo-germanium and –tin compounds				
Module 5 (4 L)	Organo-element Compounds of the Nitrogen group and Oxygen group E ^v (P, As, Sb) organyls, E ^{III} (P, As, Sb) organyls, E-C double and triple bonds, E-E double and triple bonds; examples, structure, bonding and reactivity of organo-selenium and organo-tellurium compounds				
References	 Christoph Elschenbroich, Orgaometallics (Third Edition), Wiley-VCH. B.D. Gupta and A. J. Elias, Basic Organometallic Chemistry (Concept, Syntheses and Applications) (Second Edition) (University Press) Recent Literature 				
Course Outcomes	CO1. Bonding and structure in main CO2. Unusual structure and bonding CO3. Stability of main group eler coordination number in their o	g in main group ments in diffe	o elements rent oxidation		

CO4. Applications of earth abundant main group organo-elements in catalysis

Bio-Inorganic Chemistry (21CYT812)					
Prerequisite: To impart knowledge of basic topics in Inorganic chemistry L T P					
Type: Program E	lective	3	0	0	
 Course Description: To enable the students to understand the structure, bonding, and reaction mechanism involved in the biological, bioinorganic complexes. To facilitate the student to apply the practical aspects of bio-inorganic chemistry in basic an advanced research and development. To understand the basic need of bio-inorganic chemistry in industrial applications. 				ry in basic and	
Course Content					
Module 1 (8L)	Transition metal ions in biology Metallo-biomolecules, electron carriers, oxygen carriers and enzymes, Biogeoinorganic chemistry - environment, their occurrence and function, active- site structure and function of metallo-proteins and metallo-enzymes with various transition metal ions and ligand systems.			nction, active-	
Module 2 (14L)	Transport and storage of Dioxygen: Heme proteins and oxygen uptake, and their coordination geometry, electronic structure and functions of hemoglobin, myoglobin and characterization of O ₂ bound species by Raman and infrared spectroscopic methods, representative synthetic models of heme- and non-heme systems, hemocyanins and hemerythrin, model synthetic complexes of iron, copper and cobalt etc. Zinc enzymes-carboxypeptidase and carbonic anhydrase, Iron enzymes-catalase, peroxidase and cytochrome P-450, Metallo enzyme-II Copper enzymes-superoxide dismutase, Molybdenum oxotransferase enzymes-xanthine oxidase, Coenzyme vitamin B12				
Module 3 (8L)	Calcium in Biology - Ion channels in biomembrane, calcium in living cells, transport and regulation, molecular, aspects of intramolecular processes, extracellular binding proteins				
Module 4 (10 L)	Metals in medicine, metal deficiency and disease, toxic effects of metals (Cd, Hg and Cr toxic effects with specific examples), metals used for diagnosis and chemotherapy with particular reference the anticancer drugs and MRI (Mn and Fe) agents				
Reference Books	 Principles of Bioinorganic Chemistry, S. J. Lippard and J. M. Berg, University Science Books, Mill Valley, 1994. Bioinorganic Chemistry: Inorganic Elements in the Chemistry of Life, W. Kaim and B. Schwederski, John Wiley & Sons Inc., 1994. 				
Course Outcomes	CO1. Understand the importance of CO2. Understand role of iron, coppe		• •		

CO3.	. Understand the applications of Bioinorganic chemistry such as in chemotherapy, imaging and other similar applications
	Explain the reaction mechanism of different metal complex reactions.Become familiar with the various transition metal-based inorganic materials.

	Symmetry and Group Theory (21	CYT813)			
Prerequisite: Basic knowledge of structure and bonding of inorganic compounds and coordination compounds L T P					
Type: Program	Elective	3	0	0	
Course Description: To impart the knowledge of symmetry and group theory in inorganic/organic compounds and its applications in various molecular spectroscopy			rganic/organic		
Course Conten	t				
Module 1 (6L)	Introduction Concept of symmetry, symmetry in nature, po symmetry in molecules - Symmetry operation of symmetry, improper axis of rotation, centre identity and determinations of various symmetry	, rotational a of symmetr	axis of syn y and inv	mmetry, plane	
Module 2(4L)	Molecular Point Group Schonfilies symbols, identification of molecular point group, cyclic point group, dihedral point group, improper point groups, molecules with special point group, molecules of high symmetry.				
Module 3(8L)	Properties of Group Properties of group, sub-group, abelian and non-abelian group, class and order of the group, matrices representations of groups.				
Module 4(15L)	Representations, Character Table and its applications Representations, reducible and irreducible representations, derivation of reducible representation by 3N system and bond vector method				
	Character Table and its applications Structure of character table, the great orthogonality theorem (without proof) and its importance, derivation of character tables for water and ammonia molecule, Mullikan symbols determination for translations and rotations, applications of group theory in FTIR and Raman and spectroscopy, molecular hybridization and NMR spectroscopy			onia molecule, pplications of	
Module 6 (2L)	Direct product Concept of direct product and its application in spectroscopy				
Reference Books	 Physical methods in Chemistry, R. S Drago, Saunders college K. Veera Reddy, Symmetry and spectroscopy of molecules, New Age Science. 2009 Chemical application of group theory, F. A Cotton Group Theory in Chemistry, M. S. Gopinathan and V. Ramakrishnan, Vishal Publishing Co., 2nd edition. 				
Course Outcome	CO1. Basic knowledge of structure and geom	etry as per s	symmetry	point of view	

CO2.	Derivation of point group in various structures and general molecules,
CO3.	shapes, polygons Understanding of character table and its its fundamental in various spectroscopy

Organic Synthesis (21CYT814)				
Prerequisite: Basics of organic reaction mechanism L T P				
Type : Program E	lective	3	0	0
Course Description: To impart knowledge of advanced concepts in organic chemistry such as asymmetric synthesis, retrosynthetic analysis, disconnections approach and organometallic reagents with their applications. Common organic reactions and rearrangements will also be discussed.				
Course Content				
Module 1 (12L)	General concepts in Organic synth Asymmetric Synthesis, Retrosynthes linear and convergent synthesis, Ur organic synthesis. Organic transform	is analysis, dis	activity and pro	otecting groups in
Module 2 (14L)	4L) Organometallic Reagents and their applications Principle, preparations, properties and applications and role of catalysts and reagents including organic, inorganic, organometallics and enzymatic in organic synthesis with mechanistic details. Group I and II metal organic compounds Li, Mg, Hg, Cd, Zn and Ce Compounds.			
Module 3 (14L)	ule 3 (14L) Common Organic Reactions and Rearrangements General mechanistic considerations-nature of migration, migratory aptitude, memotry effects. A detailed study of the following rearrangements. Pinacol-pinacolone, Wagner-Meerwein, Demjanov, Benzil-Benzillic acid. Favorskii, Arndt-Eister synthesis, Neber, Beckmann, Hofmann, Curtius, Schmidt, Baeyer-Villiger, Shapiro reaction.			inacol-pinacolone, skii, Arndt-Eister
 Reference Books 1. Modern Synthetic Reactions. H.O. House, W.A. Benjamin 2. Some Modern Methods of Organic Synthesis, W. Carruthers, Cambridge Univ. Press 3. Advanced Organic Chemistry, Reactions Mechanisms and Structure, J. March. John Wiley 4. Principles of Organic synthesis, R.O.C. Norman and J.M. Coxon, Blackie Academic & Professional 5. Advanced Organic Chemistry Part B.F.A. Carey and R.J. Sundberg Plenum Press 6. Rodd's Chemistry of Carbon Compounds. Ed. S. Coffey, Elsevier 7. Name Reactions, Jie jack Li, Springer 8. Organic Syntheses Based on Name Reactions, A. Hassner and I. Namboothiri, Elsevier 				
Course Outcomes	CO1. Explain advanced organic cher retrosynthesis, disconnection a CO2. Demonstrate the role of catalys	approach etc.	-	-

organometallics and enzymatic in organic synthesis with mechanistic details
CO3. Understand various rearrangement reactions with mechanistic approach.

Applied Biocatalysis (Enzymes) (21CYT815)				
Prerequisite: Ba	sics of enzyme catalysis	L	т	Р
Type: Program Elective300			0	
Course Description: To impart knowledge of biological catalysis including enzyme catalysis in different reactions.				
Course Content				
Module 1 (4L)	Introduction Basic considerations, Proximity effects and n	nolecular ad	aption.	
Module 2 (14L)	Enzymes Introduction and historical perspective, chemical and biological catalysis, remarkable properties of enzymes like catalytic power, specificity and regulation. Nomenclature and classification, extraction and purification. Fischer's lock and key and Koshland's induced fit hypothesis, concept and identification of active site by the use of inhibitors, affinity labeling and enzyme modification by site-directed mutagenesis. Enzyme kinetics, Michael's-Menten and Lineweaver Burk plots, reversible and irreversible inhibition.			
Module 3 (8L)	(8L) Mechanism of Enzyme Action Transition-state theory, orientation and Steric effect, acid-base catalysis, covalent catalysis, strain or distortion. Examples of some typical enzyme mechanisms for chymotrypsin, ribonuclease, lysozyme and carboxypeptidase.			
Module 4 (8L)	Enzyme Catalyzed Reactions Nucleophilic displacement on a phosphorus atom, multiple displacement reactions and the coupling of ATP cleavage to endergonic processes. Transfer of sulphate, addition and elimination reactions, enolic intermediates in Isomerization's reactions, α-Cleavage and condensation, some isomerization and rearrangement reactions. Enzyme catalyzed carboxylation and decarboxylation.			
Module 5 (8L)	bdule 5 (8L) Biotechnological Applications of Enzymes Large-scale production and purification of enzymes, techniques and methods of immobilization of enzymes, effect of immobilization on enzyme activity, application of immobilized enzymes, use of enzymes in food and drink industry-brewing and cheese-making, syrups from corn starch, enzymes as targets for drug design. Clinical uses of enzymes, enzyme therapy, enzymes and recombinant DNA Technology.			
Reference Books	 Bioorganic Chemistry: A Chemical Approa and C. Penny, Springer Verlag. Understanding Enzymes, Trevor Palmer, F Enzyme Chemistry: Impact and application 	Prentice Hall	l.	

	 Enzyme Mechanisms Ed. M.I. Page and A Williams, Royal Society of Chemistry. Fundamentals of Enzymology, N.C. Price and L. Stevens. Oxford University Press. Immobilized Enzymes: An Introduction and Applications in Biotechnology, Michael ID. Trevan, John Wiley. Enzymatic Reaction Mechanisms. C. Walsh. W.H. Freeman. Enzyme Structure and Mechanism, A Fersht, W.H. Freeman. Biochemistry: The Chemical Reactions of Living Cells, D.E. Metzler, Academic Press.
Course Outcome	 CO1. Understand the theories of enzyme kinetics in the cell CO2. Mechanisms of enzyme catalysis, and the mechanisms of enzyme regulation in the cell CO3. Describe and use the equations of enzyme kinetics.

Heterocyclic Chemistry (21CYT816)				
Prerequisite: Ba	sics of Heterocyclic Chemistry	L	т	Р
Type: Program E	Type: Program Elective300			0
Course Description: Heterocyclic compounds are very interesting due to their distinct structure and their availability in Nature and in Medicinal Drugs. So, the technique of synthesis of heterocyclic compounds is important in the synthesis of different drugs. This course gives quantitative ideas about the synthesis, properties and uses of such heterocyclic compounds like pyrole, pyridine quinoline, thiophene, furan and their benzo-fused derivatives.				
Course Content				
Module 1 (8L)	Nomenclature of Heterocycles Replacement and systematic nomenclat monocyclic fused and bridged heterocycles.	ure (Hantz	sch-Widm	nan system) for
Module 2 (12L)	Benzo-Fused Five-Membered Heterocycle Synthesis and reactions including medi bezofurans and benzothiophenes.		cations c	of benzopyrroles,
Module 3 (10L)	Six-Membered Heterocycles with one Hete Synthesis and reactions of pyrylium salts a pyridinium & thiopyrylium salts and pyr quinolizinium and benzopyrylium salts, coum	ind pyrones idones. Sy	nthesis a	and reactions of
Module 4 (10L)	Six Membered Heterocycles with Two or More Heteroatoms Synthesis and reactions of diazines, triazines, tetrazines and thiazines. Seven-and Large-Membered Heterocycles Synthesis and reactions of azepines, oxepines, thiepines, diazepines thiazepines, azocines.			
 Reference Books 1. Heterocyclic Chemistry Vol. 1-3, R.R. Gupta, M. Kumar and V. Gupta, Springer Verlag 2. The Chemistry of Heterocycles, T. Eicher and S. Hauptmann, Thieme 3. Heterocyclic chemistry J.A. Joule, K. Mills and g. F. Smith, Chapman and Hall 4. Heterocyclic Chemistry, T.L. Gilchrist, Longman Scientific Technical 5. Contemporary Heterocyclic Chemistry, G. R. Newkome and W.W. Paudler, Wiley-Inter Science 6. An Introduction to the Heterocyclic Compounds, R.M. Acheson, John Wiley 7. Comprehensive Heterocyclic Chemistry, A.R. Katritzky and C.W. Rees, eds. Pergamon Press 				
Course Outcome	 CO1. Explain nomenclature, synthesis ar membered heterocyclic compounds CO2. Explain various methods of ring sy heterocyclic compounds and their derivative 	nthesis, rea		

CO3. Acquire knowledge on various biosynthetic pathways.	
--	--

Chemistry of Natural Products (21CYT817)				
Prerequisite: Ba	sic knowledge of natural products	L	т	Р
Type: Program Elective300			0	
available in differ The contents of t	otion: Alkaloids and terpenes are two very rent kind of drugs and perfumery chemicals like his course deals with synthesis and structural de them are also discussed here.	ephedrine, co	onium, citral,	jasmone etc.
Course Content				
Module 1 (14L)	Terpenoids and Carotenoids Classification, nomenclature, occurrence, is determination, isoprene rule. Structure deter and synthesis of the following representative Menthol, Farnesol, Zingiberence, Santonin, F	mination, ster molecules: Cit	eochemistry, ral, Geraniol	biosynthesis α-Terpeneol,
Module 2 (14L)	Module 2 (14L) Alkaloids Definition, nomenclature and physiological action, occurrence, isolation, general methods of structure elucidation, degradation, and classification based on nitrogen heterocyclic ring, role of alkaloids in plants. Structure, stereochemistry, synthesis and biosynthesis of the following: Ephedrine, (+) - Coniine, Nicotine, Atropine, Quinine and Morphine.			d on nitrogen synthesis and
Module 3 (10L)	Steroids Occurrence, nomenclature, basic skeleton, Diel's hydrocarbon and stereochemistry, Isolation, Structure determination and synthesis of Cholesterol, Bile acids, Androsterone, Testosterone, Estrone, Progesterone, Aldosterone, Biosynthesis of Steroids.			
Module 4 (4L)	Porphyrins Structure and synthesis of Haemoglobin and	Chlorophyll.		
 Reference Books 1. Natural Products: Chemistry and Biological Significance, J. Mann, R.S. Davidson, J.B. Hobbs, D.V. Banthrope and J.B. Harbome, Longman, Esses. 2. Organic Chemistry: Vol. 2 1L. Finar, ELBS 3. Stereoselective Synthesis: A Practical Approach, M. Norgradi, VCH. 4. Rodd's Chemistry of Carbon Compounds, Ed. S. Coffey, Elsevier. 5. Chemistry, Biological and Pharmacological Properties of Medicinal Plants from the Americas, Ed. Kurt Hostettmann, M.P. Gupta and A. Marston. Harwood Academic Publishers. 6. Introduction to Flavonoids, B.A. Bohm. Harwood Academic Publishers. 7. New Trends in Natural Product chemistry, Ata-Ur-Rahman and M.L. Choudhary, Harwood Academic Publishers. 8. Insecticides of Natural Origin, Sukh Dev, Harwood Academic Publishers. 				

	CO1. Acquire knowledge about basic structure and occurrence of the natural products
Outcome	CO2. Able to understand the chemistry of natural products like alkaloids, steroids,
	terpenoides, carotenoids and porphyrins

Pharmaceutical Chemistry (21CYT818)					
Prerequisite: Ba	Prerequisite: Basic knowledge of pharmaceutical Chemistry L T P				
Type: Program Elective300					
industry. The me mainly deals with	Course Description: Nowadays synthesis of medicine is a very important issue for pharmaceutical industry. The medicines can be antipyretic drugs like paracetamol or antibiotic like penicillin. This course mainly deals with the structural determination, synthesis and uses of some drugs such as antipyretics, analgesic, sulpha-drugs penicillin etc.				
Course Content					
Module 1 (14L)	Disinfectants and Antiseptics Phenol and homologs (chlorocresol, chlor hydroxyquinolines, quaternary ammonium chloramine, chlorohexidine HCL, Dyes (cry alcohol.	n compoun	ds, halo	ogen derivatives,	
Module 2 (14L)	General and local anesthetics Ethers, halogenated hydrocarbons (halothane), Cyclopropane, nitrous oxide, intravenous anaesthetics, local anaesthetics: esters, benzoic acid derivatives, amides, miscellaneous anaesthetics, local anaesthetics, and their mechanism of action.				
Module 3 (12L)	Antibiotics and other antibacterial drugs Synthesis and therapeutic used of penicillin G, penicillin V, Ampicillin, Amoxycillin, Chloramphenicol, Sulphonamides, Sulphanilamide, silver sulphadiazine, Aminglycosides and their Mechanism of Action including Enzymatic Drug modification.				
Reference Books	 Alex Grigauz, Introduction to Medicinal Chemistry, Wiley-VCH Wilson and Gisvolds Text Book of Organic Medicinal and Pharmaceutical Chemistry, Ed., Robert F. Dorge. Burgers Medicinal Chemistry and Drug Discovery, Vol I-V Ed. Monfred E. Wolff John Wiley. Goodman and Gilman Pharmacological Basis of Therapeutics, McGraw- Hill Umezawa, Hamao, Hooper and Irving R, Aminoglycoside Antibiotics, Springer 				
Course Outcome	CO1. Explain the chemistry and mechan disinfectants, antiseptics, local anestheCO2. Explain the chemistry of antibacterial of	etics and ant		edicines used as	

Cell Structure & Biomolecules (21CYT819)					
Prerequisite: Ba	sic knowledge of biology and cell structure.	L	т	Р	
Type: Program E	Elective	3	0	0	
-	Course Description: This course includes basic knowledge of biology including cell structure, its functions, lipids and proteins.				
Course Content					
Module 1 (12L)	Cell Structure and Functions Structure of prokaryotic and eukaryotics function, comparison of plant and animals c catabolism and anabolism. ATP the biologic properties of carbon, chemical evolution an Biomolecules, building blocks of bio macrom	ells. Overview al energy curre d rise of living	of metabolic ency. Origin o	processes – f life -unique	
Module 2 (12L)	(12L) Lipids Fatty acids, essential fatty acids. Structure and function of triacycerols, glycerophospholipilds. Sphingolipids, cholesterol, bile acids, prostaglandins. Lipoproteins composition and function. Properties of lipid aggregate-micelles, bilayers, liposomes and their possible biological functions, Biological membranes. Fluid mosaic model of membrane structure. Lipid metabolism, β-oxidation of fatty acids.			ostaglandins. ate-micelles, membranes.	
Module 3 (12L)	odule 3 (12L)Amino acids, peptides and protein Chemical and enzymatic hydrolysis of properties to peptides, amino acid sequencing. Secondary structure of proteins, forces responsible for holding of secondary structure a-helix, β-sheets, super secondary structure, triple helix structure of collagen. Tertiary structure of protein-folding and domain structure. Quaternary structure. Amino acid metabolism-degradation and biosynthesis of amino acids, sequence determination: chemical/enzymatic/mass spectral, racemization/detection. Chemistry of oxytocin and tryptophan releasing hormone (TRH)			ary structure gen. Tertiary . Amino acid etermination:	
Reference Books	 Principles of biochemistry, A.L. Lehninger, Worth Publishers. Biochemistry, L. Stryer, W.H. Freeman. Biochemistry, J. David Rawn, Neil Patterson 				
Course Outcome	CO1. Understand the basics of cell and its of CO2. Understand the foundation on the bas CO3. Understand the structure, properties a biomolecules like lipids and proteins.	sic module of lif	-	t	

Biochemistry (21CYT820)								
Prerequisite: Ba chemistry	sic knowledge of physical, organic and inorganic	L	Т	Р				
Type: Program E	lective	3	0	0				
Course description: This course examines the chemical and physical properties of the								
building blocks of their roles in pre-	f cell, with special emphasis on the structures of p opagation of genetic codes, roles of enzymes i asic principles of metabolism.	roteins a	and nucle	eic acids,				
Course Content								
Module 1 (12L)								
Module 2 (14L)	spectroscopy, X-ray crystallography							
	Nucleic acidsNucleobases, nucleosides and nucleotides, Single stranded RNA, Doublehelix DNA, A, B and Z-DNA structures, DNA replication: polymerases,Transcription: mRNA, reverse transcription, Translation: codon, role of tRNAand ribosomeGenomes, genes, Polymerase chain reaction (PCR), Use of modified basesin PCR, mutagenesis (random and site directed), recombinant DNAtechnology							
Module 3 (4L)	 Enzymes and their kinetics Enzymes as Catalysts: role of cofactors, active sites and enzyme-substrate complex Michaelis-Menten kinetics and its extension, competitive, Inhibition of enzymes: reversible (competitive, uncompetitive and noncompetitive) and irreversible. Effect of pH and temperature on enzyme activity 							
Module 4 (12L)	MetabolismATP: Universal currency of free energy, ATP hydrolysis, Glycolysis and gluconeogenesis, Krebs cycle, Oxidative phosphorylation, Photosynthesis, Calvin cycle, Pentose phosphate pathway							
References	 Text Books: 1. J. M. Berg, J. Timoczko, L. Stryer, Biochemistry, WH Freeman, 2019 2. D. L. Nelson, M. Cox, Lehninger Principles of Biochemistry, WH Freeman, 2017 							
	3. D. Voet, J. Voet, C. Pratt, Fundamentals of Biochemistry, Wiley, 2012							
				Reference Books:				

	1. C. I. Branden, J. Tooze, Introduction to protein structure, Garland Science, 1998
	2. R. A. Copeland, Enzymes: A Practical Introduction to Structure, Mechanism, and Data Analysis, Wiley, 2000
Course Outcomes	CO1. Introduction to the chemical processes of life: Their structures, chemistry and functions
	CO2. Gain basic ideas about the flow of genetic codes via chemical transformation occurring inside cells
	CO3. Understand the role of enzymes in realizing complex chemical reactions under mild conditions
	CO4. Introduction to the central pathways of metabolism and understanding the associated chemical transformations involved therein

Physical Organic Chemistry (21CYT821)					
Prerequisite: Ba Organic Chemisti	т	Р			
Type: Program Elective300					
-	Course Description: This course will connect the knowledge of physical chemistry to traditional organic synthesis and mechanism.				
Course Content					
Module 1 (6L)	Description of molecules: (inclue carbenes, carbocations and carbani valence bond theory and molecular of	ons) based on			
Module 2 (6L)	Conformational analysis of organ rotation (determination of the rate of energy-reaction coordinate diagram f and a short introduction to molecular	constant at the or simultaneou	e coalescence sly rotation of t	temperature),	
Module 3 (15L)	Module 3 (15L) Energy surfaces (2D and 3D) and kinetic analyses in the study of reaction mechanisms: Ke More O'Ferral-Jencks plot (variable transition-state diagram), reaction order and rate laws, the steady-state approximation in the study of complex reactions, kinetic versus thermodynamic control, the principle of microscopic reversibility, the Curtin-Hammett principle, the Hammonds postulate. Energy functions from rate constants and reaction temperatures: The Arrhenius (activation energy) and the Eyring (enthalpy and entropy of activation) equations. Kinetic isotope effects (primary and secondary). Polanyi' rule of mode selectivity.			tate diagram), the study of principle of Hammonds peratures: The of activation)	
Module 4 (15L)					
Module 5 (6L)	Classification of solvents based on physical properties: dielectric constant, refractive index, dipole moment, donor number, acceptor number, hydrogen bond acceptor capacity alpha, hydrogen bond donor capacity beta and the Reichardt's Et scales.				
References	Text Books: 1. E. V. Anslyn; D. A. Dougherty: Modern Physical Organic Chemistry, University Science Books Reference Books:				

	 F. A. Carey; R. J. Sundberg: Advanced Organic Chemistry, Part A: Structure and Mechanisms, Springer T. H. Lowry and K. S. Richardson: Mechanism and Theory in Organic Chemistry, Pearson
Course Outcomes	CO1. To connect the physical chemistry knowledge to the organic synthesis and mechanism.CO2. Invoke known mechanisms and intermediates to explain observed chemical phenomena

	Electrochemistry: Ionics and Electrodics (21CYT822)				
Prerequisite: Ba Chemistry and E	asic understanding of Physical lectrochemistry	L	т	Р	
Type: Program E	Type: Program Elective300				
Course Objectives: To apply theories in electrochemistry to analyse electrochemical processes i liquid as well as solid phases.			l processes in		
Course Content					
Module 1 (6L)	Introduction to Electrode Pr reactions,Faradaic and nonfaradaic solution interface in nonfaradaic pro electrode reactions, Mass transfer co	electrode proc cesses, Factor	rs effecting rat	of electrode-	
Module 2 (8L)	Ionics: Introduction to electrochemistion interactions, ionic transport and potentials, Liquid junction potential, S	diffusion in solu	utions, Equilibr		
Module 3 (6L)	Electric Double layer: Models for double-layer structure - The Helmholtz model, Stern's modification, Gouy and Chapman model, Specific adsorption of ions and neutral compounds, Influence of electric double layer on charge transfer processes.				
Module 4 (8L)	Electrodics and Electrode kinet Current-potential relationship (Butler- Hydrogen evolution and oxygen red of metals	Volmer and Ta	fel equations),	Overpotential,	
Module 5 (6L)	Electrochemical Methods: Potential step methods, Potential sweep methods, Pulse techniques, Controlled current techniques, Basic concepts of impedance, Bulk electrolysis.				
Module 6 (2L)	Reference electrodes: Polarizable reference and working electrodes.	and non-polar	rizable electroo	des, Types of	
Module 7 (6L)	Solid State Electrochemistry: Interface electrical phenomena in ionic solids, Defect chemistry in solid state electrochemistry, Solid electrolytes, Mixed ionic– electronic conductors, Experimental methods, Electrochemical membranes, Important applications.				
Reference Books	 Modern Electrochemistry, J. O'M. Gileadi, Physical Electrochemistry Applications, Wiley-VCH, 2011 J. Bard and L. R Faulkner Electro Applications, 2nd Edition, Wiley, 2 	v, Fundamenta chemical Meth	l, Techniques a	and	

	 H. Rieger, Electrochemistry, 2nd Edition, Springer 1994 Newman and K. E. Thomas-Alyea, Electrochemical Systems, 3rd Edition, Wiley Interscience, 2004 P. J. Gellings, H. J. M. Bouwmeester, CRC Press, 1997
Course Outcome	 CO1. Representation of an electrochemical cell and write relevant electrochemical equations CO2. Explanation of potential, overpotential and thermodynamics involved during the operation of the cell. CO3. Calculation of electrochemical cell parameters, understand the mass transfer process during electrochemical reactions involving migration and diffusion. CO4. Calculation of electroactive active surface area, plotting current vs. overpotential, potential vs. current, and understand basic electrochemical methods.

Solid	State Chemistry: Fundamentals a	and Applicati	ons (21CYT	323)
Prerequisite: Basic understanding of Physical Chemistry		L	т	Р
Type: Program E	Elective	3	0	0
•	Course Objectives: To identify and apply the concepts involved in the structure, physical properties, syntheses and characterization of crystalline inorganic solids.			ture, physical
Course Content	1			
Module 1 (6L)	Crystal Structure: Crystalline and an cells, crystal systems and Bravais la sites, Structures based on close pa packing, Crystal defects and the crystallographic shear	attices, Close cking, Layered	packing in sol d structures ba	ids, Interstitial ased on close
Module 2 (8L)	Solid Solutions and Preparative Methods of Solids: Substitutional solid solutions, Interstitial/vacancy solid solutions, Monitoring of solid solution formation, Fundamentals and mechanistic aspects of solid state reactions, Film deposition, Chemical precursor method, Co-precipitation, Sol-gel, Metathesis, Solution combustion synthesis, Ion exchange reactions, Intercalation/de-intercalation reactions, Hydrothermal, Solvothermal and template synthesis, Microwave and sonochemistry approach for the synthesis of solids.			
Module 3 (6L)	Preparative Methods for Single Hydrothermal method, Chemical va Czochralski, Kyropoulus, Verneuil, E	apor transport,	Melt growth	- Bridgeman,
Module 4 (4L)	Characterization of Solids by Phys (PXRD) – Indexing the PXRD patte parameter and density from the PXRI Microscopic and Spectroscopic techr	rns, Determina D patterns, Ele	tion of lattice	type, Unit cell
Module 5 (5L)	Electronic and Electrical Properties of Solids: Band structures of metals, semiconductors and insulators, Controlled vacancy semiconductors, Thermoelectric effects - Thomson, Peltier and Seebeck, Hall effect, Dielectric materials, Ferroelectricity, Pyroelectricity, Piezoelectricity and Multiferroics			
Module 6 (6L)	Ionic Conductivity and Magnetic crystals, Stoichiometry and ionic con and oxide ion conductors, Selecte perovskites, hexaferrites and lanthan	ductivity, Fast i d magnetic m	ion conducting naterials - spi	solids, Halide nels, garnets,

Module 7 (4L)	Thermal Analysis of Solids: TGA, DTA and DSC, Applications – Glasses, Polymorphic phase transition, Decomposition pathway determination, Enthalpy and heat capacity measurements
Reference Books	 A. R. West, Solid State Chemistry and its Applications, John Wiley & Sons, 2007. L. E. Smart and E. A. Moore, Solid State Chemistry - An Introduction, 4th Edition, CRC Press, 2012. H. V. Keer, Principles of the Solid State, 2nd Edition, New Age International, 2017. David Segal, Chemical Synthesis of Advanced Ceramic Materials, Cambridge University Press, 1989. Richard Tilley, Crystals and Crystal Structures, John Wiley & Sons, 2006.
Course Outcome	 CO1. Learning unit cell contents and fractional coordinates, index cubic powder XRD patterns, determine unit cell parameter and lattice types CO2. Indexing non-cubic powder XRD patterns based on unit cell parameters provided, and calculating densities from powder XRD data. CO3. Identifying and applying suitable strategies for synthesizing inorganic crystalline solids in polycrystalline and single crystal forms CO4. Correlation and prediction of structure-composition-properties (magnetic, electrical and optical) in inorganic crystalline solids

Las	er Spectroscopy: Theory and Applicati	ons (21C	YT824)	
•	sic Mathematics, Quantum Mechanics and	L	Т	Р
Spectroscopy				
Type: Program E		3	0	0
to understanding	ion: The course would impart fundamental ar the construction and function of laser and its physics, chemistry and biology	••		•
Course Content				
Module 1 (6L)	Light Matter Interaction			
	Absorption, emission and scattering, Einstei model, light-matter interaction: semiclassic linewidth, homogeneous and inhomogeneou	cal treatme	ent, Rabi c	-
Module 2 (10L)	Laser Operation Population inversion: 3 & 4 level system, cavity, optical pumping, CW lasers, Q-switc lasers. Different types of lasers: atomic lasers (He excimer lasers, solid state lasers (Nd:YA diode lasers and dye lasers.	hing and r -Ne), gas	node lockir lasers (CO	ng: pulsed 2 and N ₂),
Module 3 (9L)	Spectroscopy in Molecular Beam			
	Cavity ring-down spectroscopy, laser i resonance spectroscopy (UV-UV and IR-L photon and multi-photon ionisation spectro their applications.	JV), resona	ance enhar	nced two-
Module 4 (7L)	Laser Raman Spectroscopy			
	Resonance Raman spectroscopy, hyper Ra Raman spectroscopy, s urface enhanced coherent anti-Stokes Raman spectroscopy	Raman sp	ectroscopy	(SERS),
Module 5 (7L)	Ultrafast Spectroscopy			
	Pump-probe spectroscopy, transient absorp up-conversion spectroscopy, 2D IR spectroscopy	•	• • •	
References	 Text Books: W. Demtröder, Laser Spectroscopy Instrumentation, Springer, 2002 W. T. Silfvast, Laser Fundamentals, Can J. M. Hollas, High Resolution Spectrosco H. H. Telle, A. G. Urena, R. J. Donovan, I Dynamics and Applications, Wiley, 2007 Reference Books: 	nbridge Un opy, Wiley,	iversity Pre 1998	ss, 2016
	 1. W. Demtröder, M. Inguscio, Applied Lase 1990 2. J. C. Diels, W. Rudolph, Ultrashort Las 2006 			

Course Outcomes	CO1. The course provides an overview of the fundamental concepts of laser operation.
	CO2. It enables the students to compare the function, properties and application of various types of common lasers.
	CO3. It gives a detailed idea of a number of fundamental as well as advanced laser based spectroscopic methods and their applications in studying photochemical and photophysical processes important from chemical and biological perspectives.

Advanced Analytical Chemistry (21CYT825)				
	Prerequisite: Knowledge of advanced topics in L T P analytical techniques			
Type: Program	Elective	3	0	0
 To enable application To bring contemp To make 	 To bring adaptability to recent developments in analytical chemistry and a knowledge of contemporary issues 			knowledge of
Course Conter	nt			
Module 1(8L)	Atomic spectrometric methods: Prinatomic absorption, atomic emission an AAS, spectral and chemical interference quantitative analysis, Internal stand Inductively Coupled plasma technique	d atomic fluore ces in atomic s dard and sta	escence, beam spectroscopy, c	modulation in qualitative and
Module 2(8L)	Nuclear and radiometric methods: Concept of radiotracers and radiolabelling, radioisotope production and their properties, radioactivity and radiation measurement, activation analysis, isotope dilution method. Isotope dilution and substoichiometric analysis - advantages, limitations, and applications, radioimmunoassay and radio reagent methods, Positron emission spectroscopy			
Module 3(4L)	X-ray methods : X-ray spectra, x-ray absorption, emission, fluorescence and diffraction methods, Particle Induced X-ray Emission, Optical and electron microscopy			
Module 4(6L)	Liquid-liquid extraction: Principle, significance of various terms, batch and counter current extraction, classification of extractants systems, Examples of various extractants, synergism, stripping, backwashing, salting out agents, masking agents, emulsion formation, identification of extracting species.			
Module 5(12L)	Chromatographic techniques: Gas chromatography, high pressure liquid chromatography, instrumentation, detector characteristics, ion chromatography, size exclusion chromatography, affinity chromatography. Ion exchange: Introduction, kinetic and thermodynamic considerations, synthetic inorganic ion-exchangers – classification and applications, chelating resins. Hyphenated systems with mass spectrometry, Ion sources (ESI, APCI, CI), source and compound parameters, LC-MS, GC-MS, ICP-MS, MS-MS;			
Reference Books	 Mendham J., Denney R.C., Barnes J. of Quantitative Chemical Analysis", Skoog D.A., West D.M., Holler F. Analytical Chemistry", 8th Ed., Thou Christian G.D., "Analytical Chemistre 4. Fifield F.W. and Kealey D., "Princip 5th Ed., Blackwell Science. 2000 	6th Ed., Pears F.J. and Crou mson Brooks/C ry", 6th Ed., Jol	on Education. ch S.R., "Fur Cole. 2004 hn Wiley & Sor	2004 Idamentals of Inc. 2004

	 Mendham J., Denney R.C., Barnes J.D. and Thomas M.J.K., "Vogel's Text Book of Quantitative Chemical Analysis", 6th Ed., Pearson Education. 2004 Ewing G.W., "Instrumental Methods of Chemical Analysis", 5th Ed., McGraw Hill Book Company, Inc. 2004 Rochow T.G. and Tuckor P.A. "Introduction to microscopy by means of light, electron, X- rays or Acoustics", Springer, 2nd Ed. 2005 Jenkins R., "X-ray fluorescence spectrometry (Chemical Analysis; A series of Monographs on Analytical Chemistry and its application", Wiley-Interscience, 2nd Ed.) 1999
Course Outcome	 CO1. Students will be able to understand various aspects and importance of advanced analytical tools to understand their importance and applications CO2. Students will be able to interpret structures of compounds by the advanced working on the principles of analytical chemistry. CO3. Students will be able to conduct investigations of complex problems by the use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions. CO4. Students will learn about various methods used for separation of complex mixtures

	Dyes and Pigments (21CYT826)			
Prerequisite: Basic knowledge of dyes and pigmentsLTP			Р	
Type: Programm	e Elective	3	0	0
Course Descript	tion: This course is to acquire knowledge of dy	yes and pigr	nents and	l their
Course Content				
Module 1 (10L)	Introduction Introduction of pigments, colour index, ge constitution number, polymorphism, propertie dyes, pigment dyestuffs, and hue of the pigme shift),practices and requirement of pigments	s required in	a pigmer	nt and extender,
Module 2 (14L)	Classification of dyes Various Module operations in the manufacture of intermediates and dyes, Introduction of various functional groups, synthesis of dyes, basics of azo dyes, diazotisation and coupling reactions, azoic colours; vat dyes, reactive dyes, acid dyes, mono azo dye; disazo, nitro, diphenylamine and anthraquinone dyes; acid mordant dyes, azo metal complex dyes			
Module 3 (8L)	General methods of processing and synthesis of inorganic pigments Crushing and grinding, vaporization, co-precipitation, filtration, drying, flushing, calcinations/roasting, vapour phase oxidation etc.			
Module 4 (8L)	Raw materials for organic pigments A brief study of coal tar distillation and the manufacture of synthetic dyes: bases and pre			
Reference Books	 Zollinger, H. (2003). Color Chemistry: Syntosia of Organic Dyes and Pigments. John Wiley Venkataraman, K. (Ed.). (2012). The Chemisteria Buxbaum, G. (Ed.). (2008). Industrial Inorgia Sons Herbst, W., and Hunger, K. (2006). Industri Properties, Applications. John Wiley and States 	y and Sons nistry of Syn ganic Pigmer rial Organic I	thetic Dyo nts. John	es (Vol. 4). Wiley and
Course Outcome	 CO1. Understand the chemistry of dyes and CO2. Understand the applications of dyes and CO3. Understand the synthetic methods and dyes 	d pigments		

	Molecular Spectroscopy (21C)	′T827)		
Prerequisite: N	one	L	т	Р
Type: Program	Type: Program Elective300			0
and methods	tion: The course provides an introduction to the of various spectroscopy methods encompared spectrum starting from radio wave to X-ray		•	
Course Conten	t			
Module 1 (6L)	Matter and radiation			
	Classical and quantum theory of light, absor- molecular species, Einstein A and B coe semiclassical treatment, Rabi oscillation, associated spectroscopy, spectral bro- inhomogeneous	efficient, m	atter-wave	interaction: motion and
Module 2 (5 L)	Symmetry			
	Complete nuclear permutation inversion group Rigid Molecules	o, Molecula	r symmetry	group, Non-
	Rotational spectroscopy			
Module 2 (4L)	Rigid rotor, classification of molecular rotors, r molecules, non-rigid rotor, centrifugal disto spectra of polyatomic molecules		• •	•
Module 3 (6L)	Vibrational spectroscopy			
	Review of harmonic oscillator, vibrational sele and Morse oscillator, bond dissociation e overtones and hot bands, isotopic shift, vi normal modes	energies a	nd Birge-S	Sponer plot,
Module 4 (5L)	Raman Spectroscopy			
	Description of Raman scattering, Rayleigh s shift, polarizability of the molecules, Placzek t Raman spectra of diatomic molecules, rotation Raman spectra, Raman spectra of polyatomic	heory, sele onal, vibrat	ction rules tional and i	for rotational
Module 5 (9L)	Electronic Spectroscopy			
	Born-Oppenheimer approximation, electronic Condon principle, term symbols for atomic ar Rule, selection rules, Jablonski diagram, conversion and inter-system crossing, non-r vibrational predissociation	nd molecula deactivatio	ar states, F on process	ermi-Golden ses, internal
Module 6 (7L)	Advanced spectroscopy topics			
	Wilson-Howard-Watson rovibrational Hamilton spectroscopy at high energies, resonances, p		nic effect,	

References	 Text Books: 1. C. N. Banwell & E. M. McCash, Fundamentals of Molecular Spectroscopy, McGraw Hill, 2017. 2. P. Bernath, Spectra of Atoms and Molecules, OUP, 1995 3. J. M. Hollas, Modern Spectroscopy, Wiley, 2004. 4. P. R. Bunker & P. Jensen, Molecular Symmetry and Spectroscopy, NRC, 2006 5. Molecular Vibrations, Wilson Decius Cross, Dover
	Reference Books:
	 J. M. Hollas, High Resolution Spectroscopy, Wiley, 2004. Gerhard Herzberg, Spectra of Diatomic Molecules, Krieger Publishing Company 1950 Gerhard Herzberg, Molecular Spectra and Molecular Structure. Volume II: Infrared and Raman Spectra of Polyatomic Molecules, D. Van Nostrand Company 1945
Course Outcomes	CO1. Understand the nature and underlying physical laws of interaction between molecules and electromagnetic radiation
	CO2. Know the various factors responsible for the observed spectral shapes
	CO3. Gain fundamental information on how different molecular motions result in different spectroscopic methods
	CO4. Select molecular spectroscopy methods suitable for solving given scientific problem
	CO5. Analyse measured spectra to shed light on the structure, activity of the molecule as well as the environment and physical conditions

Concepts in Chemical Kinetics and Dynamics (21CYT828)					
Prerequisite: Basic understanding of Chemical kinetics		L	т	Р	
Type: Program Elective		3	0	0	
Course Description: There are some basic concepts which all physical chemists use to describe chemical reactions. This course five a detailed mathematical introduction of all key concepts with various applications in chemistry.					
Course Content					
Module 1 (6L) Chemical Equilibrium: Legendre Transformation, Gibbs Free Energy and other thermodynamic potentials					
Module 2 (8L)	Activation Energy: Temperature dependence of rate constants, Arrhenius equation, Tolman Interpretation, Negative activation energy, Modern Interpretation of Activation energy				
Module 3 (6L)	Potential Energy Surface: Born-Oppenheimer Approximation, Adiabatic and Diabatic representation, Non-Adiabatic coupling				
Module 4 (6L)	Reaction Coordinate : Generalized coordinate, Lagrangian and Hamiltonian mechanics, Minimum Energy Path, Reaction path Hamiltonian, Path Curvature				
Module 5 (8L)	Reaction Rate Theory: Concept of Flux, Statistical rate theories, Rate from correlation functions				
Module 6 (6L)	Tunneling in Chemistry: Simple 1-D models (Echart, Wigner, Bell, WKB approximation), Small curvature tunneling, Large Curvature Tunneling				
Module 7 (6L)	Reaction in Solution Phase: Kramers Theory, Marcus Theory				
References	 Text Books: 1. Keith J. Laidler ; Chemical Kinetics (Pearson) 2. Paul L. Houston ; Chemical Kinetics and Reaction Dynamics (Dover Publications) 3. J. I. Steinfeld, J. S. Francisco, W. L. Hase; Chemical kinetics and dynamics (Pearson(4. George C. Schatz, Mark A. Ratner; Quantum Mechanics in Chemistry (Dover Publications) Reference Books: 1. Herbert Goldstein ; Classical Mechanics (Pearson Education) 2. R. D. Levine ; Molecular Reaction Dynamics (Cambridge University Press) 				
Course outcome	CO1. To learn all key concepts required in the description of chemical dynamics. CO2. To learn mathematical descriptions for all the chemical dynamic concepts.				

Green and Industrial Organic Chemistry (21CYT829)					
Prerequisite : Basic knowledge of organic chemistry and green chemistry		L	т	Р	
Type: Program Elective		3	0	0	
Course Description: To acquire knowledge of Green aspects of a chemical reaction and various industrial processes					
Course Content					
Module 1 (10L)	Green Chemistry Principles of green chemistry, atom economy, tools of green chemistry: green solvents (ionic liquids, supercritical fluids), abundant natural feedstocks/starting precursor, multicomponent reactions (MCRs), tandem/domino reactions, microwave assisted organic synthesis (MAOS), solid phase synthesis, aqueous media reactions, General introduction to Combinatorial Chemistry.				
Module 2 (10L)	Applications of Green Chemistry Green synthesis of ibuprofen, design and use of CO ₂ -surfactants for precision cleaning in industries, environmentally preferable marine antifoulant, use of molting accelerators in place of toxic and harmful insecticides, oxidant activators to replace chlorine-based delignification process in paper and pulp industry, green chemistry process for polyester regeneration, Biocatalytic promiscuity of enzymes for C-C bond formation. Recent applications of ionic liquids as solvent and catalysts in chemical industry.				
Module 3 (10L)	Industrial Organic Syntheses: The raw material and basic processes, chemical processes used in industrial organic synthesis: production of methanol, ethanol, ethyl acetate, ammonia, sulfuric acid, acetaldehyde, acetic acid, ethylene glycol, glycerine, acetone, phenol, formaldehyde, 1,3-butadinene and styrene.				
Module 4 (10L)	Chemistry of Soaps and Detergents Introduction, methods of preparation of Soap, types of soaps, structure and properties of Soaps cleansing mechanism, limitation of soap as cleansing agent. Introduction, Principal groups of synthetic detergents, Classification of surfactants; anionic, cationic, amphoteric and non-ionic detergents, alkyl/aryl/ amide sulphonates, binders and builders; eco-friendly detergents: detergents containing enzymes and zeolites.				
Reference Books	 Anastas, P. T., and Warner, J. C. (2000). Green chemistry: theory and practice. Oxford university press. 2. Sauer, N. N. (2000). Green Chemistry: Frontiers in Benign Chemical Syntheses and Processes Ed. Anastas P. T., and Williamson T. C., (US Environmental Protection Agency). Oxford University Press: New York, NY. Malhotra, S. V. (2007). Ionic Liquids in Organic Synthesis, Oxford University Press, US. 				

	 Howard, W.L., (1986). Introduction to Industrial Chemistry. Wiley Inter-science. Weissermel, K., and Arpe, H.J., (1997) Industrial Organic Chemistry. Wiley-VCH. Sheldon, R.A., Arends, I., and Hannefed, U., (2007). Green Chemistry and Catalysis. Wiley-VCH Verlag GmbH and Co. Ahluwalia, V. K. and Kidwai, M., (2004). New Trends in Green Chemistry. Anamaya Publishers. Scragg, A.H. (2009) Biofuels: Production, Application and Development, CAB International, UK.
Course	CO1. Understand the green chemistry principles and their applications
Outcome	CO2. Understand organic chemistry of industrial chemical manufacturing