- (1) Find the principle value of the logarithm Ln(6-6i) in the form a+ib
 - (a) $\frac{1}{2}\log_e 72 \frac{1}{4}\pi i$ (b) $\frac{1}{2}\log_e 72 + \frac{1}{4}\pi i$ (c) $-\frac{1}{2}\log_e 72 - \frac{1}{4}\pi i$ (d) $-\frac{1}{2}\log_e 72 + \frac{1}{4}\pi i$
- (2) Given $x_1 = 1, x_{n+1} = \sqrt{x_n + 2}, n \in \mathbb{N}$. Then
 - (a) (x_n) is bounded and divergent
 - (b) (x_n) is increasing and convergent
 - (c) (x_n) is decreasing and convergent
 - (d) (x_n) is unbounded and divergent
- (3) Let $f : (\mathbb{R}, \tau_u) \to (\mathbb{R}, \tau_u)$ be a continuous function such that $f(\mathbb{R}) \subseteq \mathbb{N}$, where τ_u is the usual topology on \mathbb{R} . Then which of the following statements is correct?
 - (a) f is constant.
 - (b) f need not be constant.
 - (c) $f(\mathbb{R}) = \mathbb{N}$.
 - (d) None of these.
- (4) The rate of convergence of the Newton-Raphson method, while finding the real root of the equation $x^2 = 1 + 2 \ln x$ will be
 - (a) Linear.
 - (b) Quadratic.
 - (c) Cubic.
 - (d) Method does not converge.
- (5) The geodesics on the right circular cylinder r = 1 are given by the extremals of the functional:

(a)
$$L[z(\theta)] = \int_{\theta_1}^{\theta_2} \sqrt{1 + (z')^2} d\theta.$$

(b) $L[z(\theta)] = \int_{\theta_1}^{\theta_2} \sqrt{z^2 + (z')^2} d\theta.$
(c) $L[z(\theta)] = \int_{\theta_1}^{\theta_2} z\sqrt{1 + (z')^2} d\theta.$

(d) None of these.